

 Binance Spot Rest

 v0.1.1

 [image: Logo]

 Table of contents

 	Binance Spot Rest

 	Changelog

 	Architecture

 	LICENSE

 	
 Modules

 	BinanceSpotRest

 	BinanceSpotRest.Client

 	BinanceSpotRest.Client.Request

 	BinanceSpotRest.Endpoints.Account.Account.Query

 	BinanceSpotRest.Endpoints.Account.AccountCommission.Query

 	BinanceSpotRest.Endpoints.Account.AllOrderList.Query

 	BinanceSpotRest.Endpoints.Account.AllOrders.Query

 	BinanceSpotRest.Endpoints.Account.MyAllocations.Query

 	BinanceSpotRest.Endpoints.Account.MyPreventedMatches.Query

 	BinanceSpotRest.Endpoints.Account.MyTrades.Query

 	BinanceSpotRest.Endpoints.Account.OpenOrderList.Query

 	BinanceSpotRest.Endpoints.Account.OpenOrders.Query

 	BinanceSpotRest.Endpoints.Account.Order.Query

 	BinanceSpotRest.Endpoints.Account.OrderAmendments.Query

 	BinanceSpotRest.Endpoints.Account.OrderList.Query

 	BinanceSpotRest.Endpoints.Account.RateLimitOrder.Query

 	BinanceSpotRest.Endpoints.General.ExchangeInfo.Query

 	BinanceSpotRest.Endpoints.General.ExchangeInfo.SymbolQuery

 	BinanceSpotRest.Endpoints.General.ExchangeInfo.SymbolsQuery

 	BinanceSpotRest.Endpoints.General.Ping.Query

 	BinanceSpotRest.Endpoints.General.Time.Query

 	BinanceSpotRest.Endpoints.MarketData.AggTrades.Query

 	BinanceSpotRest.Endpoints.MarketData.AvgPrice.Query

 	BinanceSpotRest.Endpoints.MarketData.Depth.Query

 	BinanceSpotRest.Endpoints.MarketData.HistoricalTrades.Query

 	BinanceSpotRest.Endpoints.MarketData.Klines.Query

 	BinanceSpotRest.Endpoints.MarketData.Ticker.SymbolQuery

 	BinanceSpotRest.Endpoints.MarketData.Ticker.SymbolsQuery

 	BinanceSpotRest.Endpoints.MarketData.Ticker24Hr.Query_DANGER_LARGE_WEIGHT

 	BinanceSpotRest.Endpoints.MarketData.Ticker24Hr.SymbolQuery

 	BinanceSpotRest.Endpoints.MarketData.Ticker24Hr.SymbolsQuery

 	BinanceSpotRest.Endpoints.MarketData.TickerBookTicker.Query

 	BinanceSpotRest.Endpoints.MarketData.TickerBookTicker.SymbolQuery

 	BinanceSpotRest.Endpoints.MarketData.TickerBookTicker.SymbolsQuery

 	BinanceSpotRest.Endpoints.MarketData.TickerPrice.Query

 	BinanceSpotRest.Endpoints.MarketData.TickerPrice.SymbolQuery

 	BinanceSpotRest.Endpoints.MarketData.TickerPrice.SymbolsQuery

 	BinanceSpotRest.Endpoints.MarketData.TickerTradingDay.SymbolQuery

 	BinanceSpotRest.Endpoints.MarketData.TickerTradingDay.SymbolsQuery

 	BinanceSpotRest.Endpoints.MarketData.Trades.Query

 	BinanceSpotRest.Endpoints.MarketData.UiKlines.Query

 	BinanceSpotRest.Endpoints.Trading.OpenOrdersDelete.Query

 	BinanceSpotRest.Endpoints.Trading.OrderAmendKeepPriorityPut.Query

 	BinanceSpotRest.Endpoints.Trading.OrderCancelReplacePost.LimitMakerQuery

 	BinanceSpotRest.Endpoints.Trading.OrderCancelReplacePost.LimitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderCancelReplacePost.MarketQuery

 	BinanceSpotRest.Endpoints.Trading.OrderCancelReplacePost.StopLossLimitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderCancelReplacePost.StopLossQuery

 	BinanceSpotRest.Endpoints.Trading.OrderCancelReplacePost.TakeProfitLimitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderCancelReplacePost.TakeProfitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderDelete.Query

 	BinanceSpotRest.Endpoints.Trading.OrderListDelete.Query

 	BinanceSpotRest.Endpoints.Trading.OrderListOcoPost.AboveLimitMakerBelowStopLossLimitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOcoPost.AboveLimitMakerBelowStopLossQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOcoPost.AboveStopLossBelowLimitMakerQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOcoPost.AboveStopLossBelowTakeProfitLimitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOcoPost.AboveStopLossBelowTakeProfitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOcoPost.AboveStopLossLimitBelowLimitMakerQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOcoPost.AboveStopLossLimitBelowTakeProfitLimitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOcoPost.AboveStopLossLimitBelowTakeProfitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOcoPost.AboveTakeProfitBelowStopLossLimitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOcoPost.AboveTakeProfitBelowStopLossQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOcoPost.AboveTakeProfitLimitBelowStopLossLimitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOcoPost.AboveTakeProfitLimitBelowStopLossQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtoPost.WorkingLimitMakerPendingLimitMakerQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtoPost.WorkingLimitMakerPendingLimitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtoPost.WorkingLimitMakerPendingMarketQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtoPost.WorkingLimitMakerPendingStopLossLimitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtoPost.WorkingLimitMakerPendingStopLossQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtoPost.WorkingLimitMakerPendingTakeProfitLimitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtoPost.WorkingLimitMakerPendingTakeProfitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtoPost.WorkingLimitPendingLimitMakerQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtoPost.WorkingLimitPendingLimitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtoPost.WorkingLimitPendingMarketQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtoPost.WorkingLimitPendingStopLossLimitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtoPost.WorkingLimitPendingStopLossQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtoPost.WorkingLimitPendingTakeProfitLimitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtoPost.WorkingLimitPendingTakeProfitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitMakerPendingAboveLimitMakerBelowStopLossLimitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitMakerPendingAboveLimitMakerBelowStopLossQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitMakerPendingAboveStopLossBelowLimitMakerQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitMakerPendingAboveStopLossBelowTakeProfitLimitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitMakerPendingAboveStopLossBelowTakeProfitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitMakerPendingAboveStopLossLimitBelowLimitMakerQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitMakerPendingAboveStopLossLimitBelowTakeProfitLimitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitMakerPendingAboveStopLossLimitBelowTakeProfitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitMakerPendingAboveTakeProfitBelowStopLossLimitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitMakerPendingAboveTakeProfitBelowStopLossQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitMakerPendingAboveTakeProfitLimitBelowStopLossLimitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitMakerPendingAboveTakeProfitLimitBelowStopLossQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitPendingAboveLimitMakerBelowStopLossLimitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitPendingAboveLimitMakerBelowStopLossQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitPendingAboveStopLossBelowLimitMakerQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitPendingAboveStopLossBelowTakeProfitLimitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitPendingAboveStopLossBelowTakeProfitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitPendingAboveStopLossLimitBelowLimitMakerQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitPendingAboveStopLossLimitBelowTakeProfitLimitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitPendingAboveStopLossLimitBelowTakeProfitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitPendingAboveTakeProfitBelowStopLossLimitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitPendingAboveTakeProfitBelowStopLossQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitPendingAboveTakeProfitLimitBelowStopLossLimitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitPendingAboveTakeProfitLimitBelowStopLossQuery

 	BinanceSpotRest.Endpoints.Trading.OrderPost.LimitMakerQuery

 	BinanceSpotRest.Endpoints.Trading.OrderPost.LimitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderPost.MarketQuery

 	BinanceSpotRest.Endpoints.Trading.OrderPost.StopLossLimitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderPost.StopLossQuery

 	BinanceSpotRest.Endpoints.Trading.OrderPost.TakeProfitLimitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderPost.TakeProfitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderTestPost.LimitMakerQuery

 	BinanceSpotRest.Endpoints.Trading.OrderTestPost.LimitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderTestPost.MarketQuery

 	BinanceSpotRest.Endpoints.Trading.OrderTestPost.StopLossLimitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderTestPost.StopLossQuery

 	BinanceSpotRest.Endpoints.Trading.OrderTestPost.TakeProfitLimitQuery

 	BinanceSpotRest.Endpoints.Trading.OrderTestPost.TakeProfitQuery

 	BinanceSpotRest.Endpoints.Trading.SorOrderPost.LimitQuery

 	BinanceSpotRest.Endpoints.Trading.SorOrderPost.MarketQuery

 	BinanceSpotRest.Endpoints.Trading.SorOrderTestPost.LimitQuery

 	BinanceSpotRest.Endpoints.Trading.SorOrderTestPost.MarketQuery

 	BinanceSpotRest.Enums.CancelReplaceMode

 	BinanceSpotRest.Enums.CancelRestrictions

 	BinanceSpotRest.Enums.Interval

 	BinanceSpotRest.Enums.Method

 	BinanceSpotRest.Enums.NewOrderRespType

 	BinanceSpotRest.Enums.OrderRateLimitExceededMode

 	BinanceSpotRest.Enums.OrderType

 	BinanceSpotRest.Enums.Permission

 	BinanceSpotRest.Enums.SecurityType

 	BinanceSpotRest.Enums.SelfTradePreventionMode

 	BinanceSpotRest.Enums.Side

 	BinanceSpotRest.Enums.SymbolStatus

 	BinanceSpotRest.Enums.TimeInForce

 	BinanceSpotRest.Enums.Type

 	BinanceSpotRest.Enums.WindowSize

 	BinanceSpotRest.Query

 	BinanceSpotRest.Query.EndpointMetadata

 	BinanceSpotRest.Query.RequestSpec

 	BinanceSpotRest.Validators.IcebergQty

 	BinanceSpotRest.Validators.StartTimeEndTimeRange24h

 	BinanceSpotRest.Validators.TimeZone

 	BinanceSpotRest.Validators.WindowSize

 Binance Spot Rest

[image: License: MIT]
[image: Hex.pm]
[image: Documentation]
Elixir library for interacting with the Binance Spot REST API.
Provides a unified entry point for building, validating, signing, and executing REST requests.
Features
	Up-to-date with Binance Spot REST API — Implements all current Spot endpoints according to official docs.
	Polymorphic query struct interface — Every endpoint is represented by a query struct. Whether it has parameters or not, you always call BinanceSpotRest.request/1.
	Built-in validation — Queries with parameters are validated before sending, preventing mistakes and unnecessary API calls.
	Enum helpers — Use provided Enums to safely build queries consistently.
	Testable and mockable — Easily override execution, base URL, timestamps, or signature functions for testing without hitting Binance servers.

	Built on top of Req and Decimal
	Uses Valpa, Loe, and Numa internally for validation and composition

Installation
Add to your mix.exs:
def deps do
 [
 {:binance_spot_rest, "~> 0.1.1"}
]
end
Then fetch deps:
mix deps.get

Configuration
The library reads credentials from your application configuration under :binance_spot_rest.
Direct configuration
import Config

config :binance_spot_rest,
 base_url: "https://testnet.binance.vision", # or "https://api.binance.com" for production
 api_key: "your_api_key",
 secret_key: "your_secret_key"
Security tip: Do not commit real API keys to your repository.

Environment variables (optional, recommended)
import Config

config :binance_spot_rest,
 base_url: System.get_env("BINANCE_SPOT_REST_BASE_URL"),
 api_key: System.get_env("BINANCE_SPOT_REST_API_KEY"),
 secret_key: System.get_env("BINANCE_SPOT_REST_SECRET_KEY")
Then set your credentials in your environment:
Linux/macOS
export BINANCE_SPOT_REST_API_KEY="your_real_api_key"
export BINANCE_SPOT_REST_SECRET_KEY="your_real_secret_key"
export BINANCE_SPOT_REST_BASE_URL="https://api.binance.com" # optional

Windows (PowerShell)
setx BINANCE_SPOT_REST_API_KEY "your_real_api_key"
setx BINANCE_SPOT_REST_SECRET_KEY "your_real_secret_key"
setx BINANCE_SPOT_REST_BASE_URL "https://api.binance.com"

This keeps credentials out of code and version control.
Validation Behavior
BinanceSpotRest uses Valpa for query parameter validation.
	Default behavior in v0.1.1:
	In :dev and :test environments, validation errors include full stacktraces.
	In :prod, stacktraces are hidden; only the error tuple is returned.
This prevents leaking internal details in production logs.

	Optional configuration:
You can override the default stacktrace behavior by configuring Valpa directly:

import Config

config :valpa, show_stacktrace: true # or false
Usage
High-level API
All endpoints are represented as query structs. You call them the same way, regardless of whether they have parameters:
Parameterized query
alias BinanceSpotRest.Endpoints.Trading.OrderPost.LimitQuery

query = %LimitQuery{
 symbol: "LTCBTC",
 side: BinanceSpotRest.Enums.Side._BUY(),
 type: BinanceSpotRest.Enums.OrderType._LIMIT(),
 timeInForce: BinanceSpotRest.Enums.TimeInForce._GTC(),
 quantity: Decimal.new("1.0"),
 price: Decimal.new("0.00029")
}

{:ok, result} = BinanceSpotRest.request(query)

Empty query (e.g., ping or time endpoints)
query = %BinanceSpotRest.Endpoints.General.Time.Query{}
{:ok, result} = BinanceSpotRest.request(query)
Override behavior for testing:
BinanceSpotRest.request(query,
 execute: false,
 base_url: "https://mock.url",
 timestamp_fn: fn -> 1_740_000_000_000 end,
 signature_fn: fn _qs, _key -> "mock-signature" end
)
Tip for testing: Use execute: false and a mock signature_fn to run tests without hitting Binance.

Low-level API (optional)
You can chain internal steps manually:
import Loe
alias BinanceSpotRest.Endpoints.Trading.OrderPost.LimitQuery

query = %LimitQuery{...}

query
~>> BinanceSpotRest.Query.validate()
~>> BinanceSpotRest.Query.prepare()
~>> BinanceSpotRest.Client.create_request()
~>> BinanceSpotRest.Client.make_request()
With overrides:
query
~>> BinanceSpotRest.Query.prepare()
~>> BinanceSpotRest.Client.create_request(
 base_url: "https://mock.url",
 headers: [{"FAKE_API_KEY", "fake_api_key"}],
 timestamp_fn: fn -> 1_740_000_000_000 end,
 signature_fn: fn _qs, _key -> "mock-signature" end
)
Endpoint Queries
Each endpoint has its own query struct module:
BinanceSpotRest.Endpoints.<Category>.<EndpointPath>.<QueryModule>
Examples:
	/api/v3/ticker/bookTicker (GET) → BinanceSpotRest.Endpoints.MarketData.TickerBookTicker
	/api/v3/order/amend/keepPriority (PUT) → BinanceSpotRest.Endpoints.Trading.OrderAmendKeepPriorityPut

Development / Updating
This library aims to stay aligned with the official Binance Spot REST API.
	Monitor official docs: Binance REST API
	Compare endpoints: Look for new endpoints, changed parameters, or removed endpoints.
	Update query structs: Add new endpoints or adjust parameters/validation using Valpa.
	Update enums: Adjust Enum modules to reflect new or changed values.
	Test thoroughly: Use the testnet to verify requests and responses.
	Document version: Optionally indicate the library version or date it is synced with Binance API.

Tip for contributors: Each PR updating endpoints should reference the official API section it implements or fixes.

Adding a New Endpoint
Contributors can add new endpoints by creating a query struct under the proper module namespace.
The library is designed to be polymorphic — any query struct works with BinanceSpotRest.request/1.
Please refer to existing endpoint modules for examples.
Documentation
Full docs: HexDocs
Contributing
Contributions are welcome via issues or pull requests.
Created and maintained by Centib.
License
Released under the MIT License

 Changelog

v0.1.1 (2025-09-03)
	Bumped valpa dependency to ~> 0.1.1
	Validations now behave consistently with the latest Valpa
	Stacktraces for validation errors are no longer shown in production
	Minor internal improvements; no breaking changes

v0.1.0 (2025-09-01)
	Initial public release
	Unified request/2 function for all Spot endpoints
	Query structs for all endpoints (parameterized or empty)
	Built-in validation for query parameters
	Enum helpers for safe query building
	Configurable credentials via direct config or environment variables
	Testable and mockable request execution
	Supports high-level API (request/1) and low-level step chaining
	Documentation on HexDocs

 Architecture

This page describes the low-level workflow of the BinanceSpotRest library.
Intended for advanced users, contributors, or testing purposes.
1. Query Structs
Every endpoint is represented by a query struct, e.g.:
%BinanceSpotRest.Endpoints.General.Time.Query{}
These structs may have parameters depending on the endpoint. They are the starting point
for building requests.
2. Validation
Before sending, a query should be validated using the BinanceSpotRest.Query protocol:
import Loe

query = %BinanceSpotRest.Endpoints.General.Time.Query{}
{:ok, validated_query} = query ~>> BinanceSpotRest.Query.validate()
	Returns {:ok, query} if valid
	Returns {:error, reason} if invalid

3. Preparation
Prepare the query for execution using prepare/1:
{:ok, request_spec} = validated_query ~>> BinanceSpotRest.Query.prepare()
	Produces a %BinanceSpotRest.Query.RequestSpec{} struct containing:	metadata → %BinanceSpotRest.Query.EndpointMetadata{}	endpoint — API path (string)
	method — HTTP method (:get, :post, etc.)
	security_type — endpoint security (:NONE, :TRADE, etc.)

	query → original query struct

4. Client Request
Build and execute the HTTP request using BinanceSpotRest.Client:
request = BinanceSpotRest.Client.create_request(request_spec)
{:ok, response} = BinanceSpotRest.Client.make_request(request)
	create_request/2 builds %BinanceSpotRest.Client.Request{}
	make_request/1 executes the HTTP request via Req
	Optional keyword arguments allow mocking for testing:

request = BinanceSpotRest.Client.create_request(request_spec,
 base_url: "https://mock.url",
 headers: [{"FAKE_API_KEY", "fake_api_key"}],
 timestamp_fn: fn -> 1_740_000_000_000 end,
 signature_fn: fn _qs, _key -> "mock-signature" end
)
5. Workflow Diagram
 ┌───────────────────────────────┐
 │ Query Struct │
 │ %BinanceSpotRest.Endpoints.* │
 └──────────────┬────────────────┘
 │ validate()
 ▼
 ┌───────────────────────────────┐
 │ Validated Query Struct │
 └──────────────┬────────────────┘
 │ prepare()
 ▼
┌──┐
│ RequestSpec Struct │
│ %BinanceSpotRest.Query.RequestSpec │
│ metadata + original query │
└────────────────────┬───────────────────────┘
 │ create_request(opts \\ [])
 │ # optional overrides:
 │ # base_url, headers,
 │ # timestamp_fn, signature_fn
 ▼
 ┌──────────────────────────────────┐
 │ Client Request Struct │
 │ %BinanceSpotRest.Client.Request │
 └───────────────┬──────────────────┘
 │ make_request()
 ▼
 ┌───────────────────────────┐
 │ HTTP Response │
 └───────────────────────────┘
Notes
	This workflow is optional; for most use cases, simply call:

{:ok, result} = BinanceSpotRest.request(query)
	Internal modules like RequestSpec, EndpointMetadata, Client.Timestamp, and Client.Signature
are used automatically.
	Direct low-level use is intended for testing, mocking, or advanced contributions.

 LICENSE

MIT License
Copyright (c) 2025 Centib
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

BinanceSpotRest

Entry point for making Binance Spot REST API requests.
Overview
This module provides a unified request/2 function that handles:
	Optional validation of endpoint-specific query structs
	Preparing the HTTP request
	Signing and executing the request (or returning it for inspection)

You typically don’t need to call any other module directly — just build a query and pass it here.
Usage
	Build a query struct for the desired endpoint.
	Pass it to BinanceSpotRest.request/2.
	Optionally configure behavior via options (validation, execution, headers, etc.).

Example
alias BinanceSpotRest.Endpoints.Trading.OrderPost.LimitQuery

query = %LimitQuery{
 symbol: "LTCBTC",
 side: BinanceSpotRest.Enums.Side._BUY(),
 type: BinanceSpotRest.Enums.OrderType._LIMIT(),
 timeInForce: BinanceSpotRest.Enums.TimeInForce._GTC(),
 quantity: Decimal.new("1.0"),
 price: Decimal.new("0.00029")
}

{:ok, result} = BinanceSpotRest.request(query)

With test overrides
BinanceSpotRest.request(query,
 execute: false,
 base_url: "https://mock.url",
 timestamp_fn: fn -> 1_740_000_000_000 end,
 signature_fn: fn _query_string, _secret_key -> "mock-signature" end
)
Low-level API (optional)
You can also use the lower-level functions directly:
import Loe
alias BinanceSpotRest.Endpoints.Trading.OrderPost.LimitQuery

query = %LimitQuery{
 symbol: "LTCBTC",
 side: BinanceSpotRest.Enums.Side._BUY(),
 type: BinanceSpotRest.Enums.OrderType._LIMIT(),
 timeInForce: BinanceSpotRest.Enums.TimeInForce._GTC(),
 quantity: Decimal.new("1.0"),
 price: Decimal.new("0.00029")
}

query
~>> BinanceSpotRest.Query.validate()
~>> BinanceSpotRest.Query.prepare()
~>> BinanceSpotRest.Client.create_request()
~>> BinanceSpotRest.Client.make_request()

With overrides, without validation, and without executing the request
query
~>> BinanceSpotRest.Query.prepare()
~>> BinanceSpotRest.Client.create_request(
 base_url: "https://mock.url",
 headers: [{"FAKE_API_KEY", "fake_api_key"}],
 timestamp_fn: fn -> 1_740_000_000_000 end,
 signature_fn: fn _query_string, _secret_key -> "mock-signature" end
)
Endpoint Queries
Each Binance endpoint has its own query module under:
BinanceSpotRest.Endpoints.<Category>.<EndpointPath>.<QueryModule>
Where <EndpointPath> is derived from the endpoint path and HTTP method:
	Example 1:
	Endpoint: /api/v3/ticker/bookTicker
	Method: GET
	Module path: TickerBookTicker (method suffix omitted for GET)

	Example 2:
	Endpoint: /api/v3/order/amend/keepPriority
	Method: PUT
	Module path: OrderAmendKeepPriorityPut (HTTP method suffix added)

All query structs follow a consistent pattern and include field validation.
See Also
	BinanceSpotRest.request/2 — Main function for triggering a request
	BinanceSpotRest.Client — low-level client and request builder

 Summary

 Types

 opts()

 Functions

 request(q, opts \\ [])

 Processes a query struct into a request and optionally validates or sends it.

 Types

 opts()

 @type opts() :: [
 validate: boolean(),
 execute: boolean(),
 base_url: String.t(),
 headers: [{String.t(), String.t()}],
 secret_key_fn: (-> String.t()),
 timestamp_fn: (-> integer()),
 signature_fn: (String.t(), String.t() -> String.t())
]

 Functions

 request(q, opts \\ [])

 @spec request(
 struct(),
 opts()
) :: {:ok, any()} | {:error, any()}

Processes a query struct into a request and optionally validates or sends it.
Options
This function accepts both internal control options and options that affect the underlying HTTP request.
Control Options
	:validate (boolean, default: true) — whether to validate the query struct before preparing the request.
	:execute (boolean, default: true) — whether to actually execute the HTTP request or just return the request struct.

Client Options
These options are forwarded to BinanceSpotRest.Client.create_request/2 and affect how the HTTP request is constructed:
	:base_url (String.t()) — override the default Binance base URL (useful for testing or mocking).
	:headers ([{String.t(), String.t()}]) — additional or replacement HTTP headers.
	:secret_key_fn ((() -> String.t())) — a function that returns the Binance secret key.
	:timestamp_fn ((() -> integer())) — a function that returns a timestamp (used in signed endpoints).
	:signature_fn ((String.t(), String.t() -> String.t())) — a function to compute the request signature.

Examples
BinanceSpotRest.request(query)

BinanceSpotRest.request(query, validate: false)

BinanceSpotRest.request(query, execute: false)

BinanceSpotRest.request(query, validate: false, execute: false)

BinanceSpotRest.request(query,
 base_url: "https://test.binance.local",
 headers: [{"X-MOCK", "true"}],
 timestamp_fn: fn -> 1_740_000_000_000 end,
 signature_fn: fn _data, _key -> "mock-signature" end,
 execute: false
)
Returns either:
	{:ok, response} if successful (or if execute: false, the request struct)
	{:error, reason} if validation, preparation, or request execution fails

BinanceSpotRest.Client

Low-level BinanceSpotRest REST client (internal/advanced use).
This module builds and executes HTTP requests based on a RequestSpec.
Overview
The client handles:
	Constructing the full request URL
	Adding required headers
	Signing requests for endpoints that require authentication
	Making the HTTP request via Req

Note: This module is intended for advanced users who need fine-grained control.
For most use cases, you should use BinanceSpotRest.request/1 instead.
Options (opts)
All functions accept optional keyword list:
	:base_url - Base API URL (default: BinanceSpotRest.Env.base_url())
	:headers - List of headers (default: built from security_type)
	:secret_key_fn - Function returning secret key (default: BinanceSpotRest.Env.secret_key())
	:timestamp_fn - Function returning current timestamp (default: BinanceSpotRest.Client.Timestamp.create())
	:signature_fn - Function that creates signature (default: BinanceSpotRest.Client.Signature.create())

Example
alias BinanceSpotRest.Endpoints.Trading.OrderPost.LimitQuery

query = %LimitQuery{...}

request =
 BinanceSpotRest.Client.create_request(query,
 base_url: "https://mock.url",
 timestamp_fn: fn -> 1_740_000_000_000 end,
 signature_fn: fn _qs, _key -> "mock-signature" end
)

{:ok, response} = BinanceSpotRest.Client.make_request(request)

 Summary

 Types

 opts()

 Functions

 create_request(request_spec, opts \\ [])

 make_request(r)

 Types

 opts()

 @type opts() :: [
 base_url: String.t(),
 headers: [{String.t(), String.t()}],
 secret_key_fn: (-> String.t()),
 timestamp_fn: (-> integer()),
 signature_fn: (String.t(), String.t() -> String.t())
]

 Functions

 create_request(request_spec, opts \\ [])

 make_request(r)

BinanceSpotRest.Client.Request

Low-level request struct (internal/advanced use).
This struct represents an HTTP request built by BinanceSpotRest.Client.
Fields
	:method - HTTP method (:get, :post, etc.)
	:headers - List of request headers ([{String.t(), String.t()}])
	:base_url - Base URL for the request (e.g., "https://api.binance.com")
	:url - Full request URL including path and query parameters

Note: This struct is typically constructed via BinanceSpotRest.Client.create_request/2.
Direct usage is intended for advanced users or testing purposes.

BinanceSpotRest.Endpoints.Account.Account.Query

Account
Account information (USER_DATA)
GET /api/v3/account
Get current account information.
Weight:
20
Parameters:
	Name	Type	Mandatory	Description
	omitZeroBalances	BOOLEAN	NO	When set to true, emits only the non-zero balances of an account.
Default value: false
	recvWindow	LONG	NO	The value cannot be greater than 60000
	timestamp	LONG	YES	

Data Source:
Memory => Database
Response:
{
 "makerCommission": 15,
 "takerCommission": 15,
 "buyerCommission": 0,
 "sellerCommission": 0,
 "commissionRates": {
 "maker": "0.00150000",
 "taker": "0.00150000",
 "buyer": "0.00000000",
 "seller": "0.00000000"
 },
 "canTrade": true,
 "canWithdraw": true,
 "canDeposit": true,
 "brokered": false,
 "requireSelfTradePrevention": false,
 "preventSor": false,
 "updateTime": 123456789,
 "accountType": "SPOT",
 "balances": [
 {
 "asset": "BTC",
 "free": "4723846.89208129",
 "locked": "0.00000000"
 },
 {
 "asset": "LTC",
 "free": "4763368.68006011",
 "locked": "0.00000000"
 }
],
 "permissions": [
 "SPOT"
],
 "uid": 354937868
}

BinanceSpotRest.Endpoints.Account.AccountCommission.Query

Account Commission
Query Commission Rates (USER_DATA)
GET /api/v3/account/commission
Get current account commission rates.
Weight:
20
Parameters:
	Name	Type	Mandatory	Description
	symbol	STRING	YES	

Data Source:
Database
Response:
{
 "symbol": "BTCUSDT",
 "standardCommission": { //Commission rates on trades from the order.
 "maker": "0.00000010",
 "taker": "0.00000020",
 "buyer": "0.00000030",
 "seller": "0.00000040"
 },
 "taxCommission": { //Tax commission rates for trades from the order.
 "maker": "0.00000112",
 "taker": "0.00000114",
 "buyer": "0.00000118",
 "seller": "0.00000116"
 },
 "discount": { //Discount commission when paying in BNB
 "enabledForAccount": true,
 "enabledForSymbol": true,
 "discountAsset": "BNB",
 "discount": "0.75000000" //Standard commission is reduced by this rate when paying commission in BNB.
 }
}

BinanceSpotRest.Endpoints.Account.AllOrderList.Query

All Order List
Query all Order lists (USER_DATA)
GET /api/v3/allOrderList
Retrieves all order lists based on provided optional parameters.
Note that the time between startTime and endTime can't be longer than 24 hours.
Weight:
20
Parameters:
	Name	Type	Mandatory	Description
	fromId	LONG	NO	If supplied, neither startTime or endTime can be provided
	startTime	LONG	NO	
	endTime	LONG	NO	
	limit	INT	NO	Default: 500; Maximum: 1000
	recvWindow	LONG	NO	The value cannot be greater than 60000
	timestamp	LONG	YES	

Data Source:
Database
Response:
[
 {
 "orderListId": 29,
 "contingencyType": "OCO",
 "listStatusType": "EXEC_STARTED",
 "listOrderStatus": "EXECUTING",
 "listClientOrderId": "amEEAXryFzFwYF1FeRpUoZ",
 "transactionTime": 1565245913483,
 "symbol": "LTCBTC",
 "orders": [
 {
 "symbol": "LTCBTC",
 "orderId": 4,
 "clientOrderId": "oD7aesZqjEGlZrbtRpy5zB"
 },
 {
 "symbol": "LTCBTC",
 "orderId": 5,
 "clientOrderId": "Jr1h6xirOxgeJOUuYQS7V3"
 }
]
 },
 {
 "orderListId": 28,
 "contingencyType": "OCO",
 "listStatusType": "EXEC_STARTED",
 "listOrderStatus": "EXECUTING",
 "listClientOrderId": "hG7hFNxJV6cZy3Ze4AUT4d",
 "transactionTime": 1565245913407,
 "symbol": "LTCBTC",
 "orders": [
 {
 "symbol": "LTCBTC",
 "orderId": 2,
 "clientOrderId": "j6lFOfbmFMRjTYA7rRJ0LP"
 },
 {
 "symbol": "LTCBTC",
 "orderId": 3,
 "clientOrderId": "z0KCjOdditiLS5ekAFtK81"
 }
]
 }
]

BinanceSpotRest.Endpoints.Account.AllOrders.Query

All Orders
All orders (USER_DATA)
GET /api/v3/allOrders
Get all account orders; active, canceled, or filled.
Weight:
20
Data Source:
Database
Parameters:
	Name	Type	Mandatory	Description
	symbol	STRING	YES	
	orderId	LONG	NO	
	startTime	LONG	NO	
	endTime	LONG	NO	
	limit	INT	NO	Default: 500; Maximum: 1000.
	recvWindow	LONG	NO	The value cannot be greater than 60000
	timestamp	LONG	YES	

Notes:
	If orderId is set, it will get orders >= that orderId. Otherwise most recent orders are returned.
	For some historical orders cummulativeQuoteQty will be < 0, meaning the data is not available at this time.
	If startTime and/or endTime provided, orderId is not required.
	The time between startTime and endTime can't be longer than 24 hours.

Response:
[
 {
 "symbol": "LTCBTC",
 "orderId": 1,
 "orderListId": -1, //Unless it's part of an order list, value will be -1
 "clientOrderId": "myOrder1",
 "price": "0.1",
 "origQty": "1.0",
 "executedQty": "0.0",
 "cummulativeQuoteQty": "0.0",
 "status": "NEW",
 "timeInForce": "GTC",
 "type": "LIMIT",
 "side": "BUY",
 "stopPrice": "0.0",
 "icebergQty": "0.0",
 "time": 1499827319559,
 "updateTime": 1499827319559,
 "isWorking": true,
 "origQuoteOrderQty": "0.000000",
 "workingTime": 1499827319559,
 "selfTradePreventionMode": "NONE"
 }
]
Note: The payload above does not show all fields that can appear. Please refer to Conditional fields in Order Responses.

BinanceSpotRest.Endpoints.Account.MyAllocations.Query

My Allocations
Query Allocations (USER_DATA)
GET /api/v3/myAllocations
(Additional notes: orderId and limit combination is forbidden)
Retrieves allocations resulting from SOR order placement.
Weight:
20
Parameters:
	Name	Type	Mandatory	Description
	symbol	STRING	Yes	
	startTime	LONG	No	
	endTime	LONG	No	
	fromAllocationId	INT	No	
	limit	INT	No	Default: 500; Maximum: 1000
	orderId	LONG	No	
	recvWindow	LONG	No	The value cannot be greater than 60000.
	timestamp	LONG	No	

Supported parameter combinations:
	Parameters	Response
	symbol	allocations from oldest to newest
	symbol + startTime	oldest allocations since startTime
	symbol + endTime	newest allocations until endTime
	symbol + startTime + endTime	allocations within the time range
	symbol + fromAllocationId	allocations by allocation ID
	symbol + orderId	allocations related to an order starting with oldest
	symbol + orderId + fromAllocationId	allocations related to an order by allocation ID

Note: The time between startTime and endTime can't be longer than 24 hours.
Data Source:
Database
Response:
[
 {
 "symbol": "BTCUSDT",
 "allocationId": 0,
 "allocationType": "SOR",
 "orderId": 1,
 "orderListId": -1,
 "price": "1.00000000",
 "qty": "5.00000000",
 "quoteQty": "5.00000000",
 "commission": "0.00000000",
 "commissionAsset": "BTC",
 "time": 1687506878118,
 "isBuyer": true,
 "isMaker": false,
 "isAllocator": false
 }
]

BinanceSpotRest.Endpoints.Account.MyPreventedMatches.Query

My Prevented Matches
Query Prevented Matches (USER_DATA)
GET /api/v3/myPreventedMatches
Displays the list of orders that were expired due to STP.
These are the combinations supported:
	symbol + preventedMatchId
	symbol + orderId
	symbol + orderId + fromPreventedMatchId (limit will default to 500)
	symbol + orderId + fromPreventedMatchId + limit

Parameters:
	Name	Type	Mandatory	Description
	symbol	STRING	YES	
	preventedMatchId	LONG	NO	
	orderId	LONG	NO	
	fromPreventedMatchId	LONG	NO	
	limit	INT	NO	Default: 500; Maximum: 1000
	recvWindow	LONG	NO	The value cannot be greater than 60000
	timestamp	LONG	YES	

Weight:
	Case	Weight
	If symbol is invalid	2
	Querying by preventedMatchId	2
	Querying by orderId	20

Data Source:
Database
Response:
[
 {
 "symbol": "BTCUSDT",
 "preventedMatchId": 1,
 "takerOrderId": 5,
 "makerSymbol": "BTCUSDT",
 "makerOrderId": 3,
 "tradeGroupId": 1,
 "selfTradePreventionMode": "EXPIRE_MAKER",
 "price": "1.100000",
 "makerPreventedQuantity": "1.300000",
 "transactTime": 1669101687094
 }
]

BinanceSpotRest.Endpoints.Account.MyTrades.Query

My Trades
Account trade list (USER_DATA)
GET /api/v3/myTrades
Get trades for a specific account and symbol.
Weight:
	Condition	Weight
	Without orderId	20
	With orderId	5

Parameters:
	Name	Type	Mandatory	Description

symbol	STRING	YES	
orderId	LONG	NO	This can only be used in combination with symbol.
startTime	LONG	NO	
endTime	LONG	NO	
fromId	LONG	NO	TradeId to fetch from. Default gets most recent trades.
limit	INT	NO	Default: 500; Maximum: 1000.
recvWindow	LONG	NO	The value cannot be greater than 60000
timestamp	LONG	YES	
Notes:
	If fromId is set, it will get trades >= that fromId.
Otherwise most recent trades are returned.
	The time between startTime and endTime can't be longer than 24 hours.
	These are the supported combinations of all parameters:
	symbol
	symbol + orderId
	symbol + startTime
	symbol + endTime
	symbol + fromId
	symbol + startTime + endTime
	symbol+ orderId + fromId

Data Source:
Memory => Database
Response:
[
 {
 "symbol": "BNBBTC",
 "id": 28457,
 "orderId": 100234,
 "orderListId": -1,
 "price": "4.00000100",
 "qty": "12.00000000",
 "quoteQty": "48.000012",
 "commission": "10.10000000",
 "commissionAsset": "BNB",
 "time": 1499865549590,
 "isBuyer": true,
 "isMaker": false,
 "isBestMatch": true
 }
]

BinanceSpotRest.Endpoints.Account.OpenOrderList.Query

Open Order List
Query Open Order lists (USER_DATA)
GET /api/v3/openOrderList
Weight:
6
Parameters:
	Name	Type	Mandatory	Description
	recvWindow	LONG	NO	The value cannot be greater than 60000
	timestamp	LONG	YES	

Data Source:
Database
Response:
[
 {
 "orderListId": 31,
 "contingencyType": "OCO",
 "listStatusType": "EXEC_STARTED",
 "listOrderStatus": "EXECUTING",
 "listClientOrderId": "wuB13fmulKj3YjdqWEcsnp",
 "transactionTime": 1565246080644,
 "symbol": "LTCBTC",
 "orders": [
 {
 "symbol": "LTCBTC",
 "orderId": 4,
 "clientOrderId": "r3EH2N76dHfLoSZWIUw1bT"
 },
 {
 "symbol": "LTCBTC",
 "orderId": 5,
 "clientOrderId": "Cv1SnyPD3qhqpbjpYEHbd2"
 }
]
 }
]

BinanceSpotRest.Endpoints.Account.OpenOrders.Query

Open Orders
Current open orders (USER_DATA)
GET /api/v3/openOrders
Get all open orders on a symbol. Careful when accessing this with no symbol.
Weight:
6 for a single symbol; 80 when the symbol parameter is omitted
Parameters:
	Name	Type	Mandatory	Description
	symbol	STRING	NO	
	recvWindow	LONG	NO	The value cannot be greater than 60000
	timestamp	LONG	YES	

	If the symbol is not sent, orders for all symbols will be returned in an array.

Data Source:
Memory => Database
Response:
[
 {
 "symbol": "LTCBTC",
 "orderId": 1,
 "orderListId": -1, // Unless it's part of an order list, value will be -1
 "clientOrderId": "myOrder1",
 "price": "0.1",
 "origQty": "1.0",
 "executedQty": "0.0",
 "cummulativeQuoteQty": "0.0",
 "status": "NEW",
 "timeInForce": "GTC",
 "type": "LIMIT",
 "side": "BUY",
 "stopPrice": "0.0",
 "icebergQty": "0.0",
 "time": 1499827319559,
 "updateTime": 1499827319559,
 "isWorking": true,
 "origQuoteOrderQty": "0.000000",
 "workingTime": 1499827319559,
 "selfTradePreventionMode": "NONE"
 }
]
Note: The payload above does not show all fields that can appear. Please refer to Conditional fields in Order Responses.

BinanceSpotRest.Endpoints.Account.Order.Query

Order
Query order (USER_DATA)
GET /api/v3/order
Check an order's status.
Weight:
4
Parameters:
	Name	Type	Mandatory	Description
	symbol	STRING	YES	
	orderId	LONG	NO	
	origClientOrderId	STRING	NO	
	recvWindow	LONG	NO	The value cannot be greater than 60000
	timestamp	LONG	YES	

Notes:
	Either orderId or origClientOrderId must be sent.
	If both orderId and origClientOrderId are provided, the orderId is searched first, then the origClientOrderId from that result is checked against that order. If both conditions are not met the request will be rejected.
	For some historical orders cummulativeQuoteQty will be < 0, meaning the data is not available at this time.

Data Source:
Memory => Database
Response:
{
 "symbol": "LTCBTC",
 "orderId": 1,
 "orderListId": -1, // This field will always have a value of -1 if not an order list.
 "clientOrderId": "myOrder1",
 "price": "0.1",
 "origQty": "1.0",
 "executedQty": "0.0",
 "cummulativeQuoteQty": "0.0",
 "status": "NEW",
 "timeInForce": "GTC",
 "type": "LIMIT",
 "side": "BUY",
 "stopPrice": "0.0",
 "icebergQty": "0.0",
 "time": 1499827319559,
 "updateTime": 1499827319559,
 "isWorking": true,
 "workingTime":1499827319559,
 "origQuoteOrderQty": "0.000000",
 "selfTradePreventionMode": "NONE"
}
Note: The payload above does not show all fields that can appear. Please refer to Conditional fields in Order Responses.

BinanceSpotRest.Endpoints.Account.OrderAmendments.Query

Order Amendments
Query Order Amendments (USER_DATA)
GET /api/v3/order/amendments
Queries all amendments of a single order.
Weight:
4
Parameters:
	Name	Type	Mandatory	Description
	symbol	STRING	YES	
	orderId	LONG	YES	
	fromExecutionId	LONG	NO	
	limit	LONG	NO	Default:500; Maximum: 1000
	recvWindow	LONG	NO	The value cannot be greater than 60000.
	timestamp	LONG	YES	

Data Source:
Database
Response:
[
 {
 "symbol": "BTCUSDT",
 "orderId": 9,
 "executionId": 22,
 "origClientOrderId": "W0fJ9fiLKHOJutovPK3oJp",
 "newClientOrderId": "UQ1Np3bmQ71jJzsSDW9Vpi",
 "origQty": "5.00000000",
 "newQty": "4.00000000",
 "time": 1741669661670
 },
 {
 "symbol": "BTCUDST",
 "orderId": 9,
 "executionId": 25,
 "origClientOrderId": "UQ1Np3bmQ71jJzsSDW9Vpi",
 "newClientOrderId": "5uS0r35ohuQyDlCzZuYXq2",
 "origQty": "4.00000000",
 "newQty": "3.00000000",
 "time": 1741672924895
 }
]

BinanceSpotRest.Endpoints.Account.OrderList.Query

Order List
Query Order list (USER_DATA)
GET /api/v3/orderList
Retrieves a specific order list based on provided optional parameters.
Weight:
4
Parameters:
	Name	Type	Mandatory	Description
	orderListId	LONG	NO*	Query order list by orderListId.
orderListId or origClientOrderId must be provided.
	origClientOrderId	STRING	NO*	Query order list by listClientOrderId.
orderListId or origClientOrderId must be provided.
	recvWindow	LONG	NO	The value cannot be greater than 60000
	timestamp	LONG	YES	

Data Source:
Database
Response:
{
 "orderListId": 27,
 "contingencyType": "OCO",
 "listStatusType": "EXEC_STARTED",
 "listOrderStatus": "EXECUTING",
 "listClientOrderId": "h2USkA5YQpaXHPIrkd96xE",
 "transactionTime": 1565245656253,
 "symbol": "LTCBTC",
 "orders": [
 {
 "symbol": "LTCBTC",
 "orderId": 4,
 "clientOrderId": "qD1gy3kc3Gx0rihm9Y3xwS"
 },
 {
 "symbol": "LTCBTC",
 "orderId": 5,
 "clientOrderId": "ARzZ9I00CPM8i3NhmU9Ega"
 }
]
}

BinanceSpotRest.Endpoints.Account.RateLimitOrder.Query

Rate Limit Order
Query Unfilled Order Count (USER_DATA)
GET /api/v3/rateLimit/order
Displays the user's unfilled order count for all intervals.
Weight:
40
Parameters:
	Name	Type	Mandatory	Description
	recvWindow	LONG	NO	The value cannot be greater than 60000
	timestamp	LONG	YES	

Data Source:
Memory
Response:
[
 {
 "rateLimitType": "ORDERS",
 "interval": "SECOND",
 "intervalNum": 10,
 "limit": 50,
 "count": 0
 },
 {
 "rateLimitType": "ORDERS",
 "interval": "DAY",
 "intervalNum": 1,
 "limit": 160000,
 "count": 0
 }
]

BinanceSpotRest.Endpoints.General.ExchangeInfo.Query

Exchange Info - Permissions and status query
Exchange information
GET /api/v3/exchangeInfo
Current exchange trading rules and symbol information
Weight: 20
Data Source: Memory
Full docs: Binance API – exchangeInfo

BinanceSpotRest.Endpoints.General.ExchangeInfo.SymbolQuery

Exchange Info - Symbol query
Exchange information
GET /api/v3/exchangeInfo
Current exchange trading rules and symbol information
Weight: 20
Data Source: Memory
Full docs: Binance API – exchangeInfo

BinanceSpotRest.Endpoints.General.ExchangeInfo.SymbolsQuery

Exchange Info - Symbols query
Exchange information
GET /api/v3/exchangeInfo
Current exchange trading rules and symbol information
Weight: 20
Data Source: Memory
Full docs: Binance API – exchangeInfo

BinanceSpotRest.Endpoints.General.Ping.Query

Ping
Test connectivity
GET /api/v3/ping
Test connectivity to the Rest API.
Weight:
1
Parameters:
NONE
Data Source:
Memory
Response:
{}

BinanceSpotRest.Endpoints.General.Time.Query

Time
Check server time
GET /api/v3/time
Test connectivity to the Rest API and get the current server time.
Weight:
1
Parameters:
NONE
Data Source:
Memory
Response:
{
 "serverTime": 1499827319559
}

BinanceSpotRest.Endpoints.MarketData.AggTrades.Query

Agg Trades
Compressed/Aggregate trades list
GET /api/v3/aggTrades
Get compressed, aggregate trades. Trades that fill at the time, from the same taker order, with the same price will have the quantity aggregated.
Weight:
4
Parameters:
	Name	Type	Mandatory	Description
	symbol	STRING	YES	
	fromId	LONG	NO	ID to get aggregate trades from INCLUSIVE.
	startTime	LONG	NO	Timestamp in ms to get aggregate trades from INCLUSIVE.
	endTime	LONG	NO	Timestamp in ms to get aggregate trades until INCLUSIVE.
	limit	INT	NO	Default 500; max 1000.

	If fromId, startTime, and endTime are not sent, the most recent aggregate trades will be returned.

Data Source:
Database
Response:
[
 {
 "a": 26129, // Aggregate tradeId
 "p": "0.01633102", // Price
 "q": "4.70443515", // Quantity
 "f": 27781, // First tradeId
 "l": 27781, // Last tradeId
 "T": 1498793709153, // Timestamp
 "m": true, // Was the buyer the maker?
 "M": true // Was the trade the best price match?
 }
]

BinanceSpotRest.Endpoints.MarketData.AvgPrice.Query

Avg Price
Current average price
GET /api/v3/avgPrice
Current average price for a symbol.
Weight:
2
Parameters:
	Name	Type	Mandatory	Description
	symbol	STRING	YES	

Data Source:
Memory
Response:
{
 "mins": 5, // Average price interval (in minutes)
 "price": "9.35751834", // Average price
 "closeTime": 1694061154503 // Last trade time
}

BinanceSpotRest.Endpoints.MarketData.Depth.Query

Depth
Order book
GET /api/v3/depth
Weight:
Adjusted based on the limit:
	Limit	Request Weight
	1-100	5
	101-500	25
	501-1000	50
	1001-5000	250

Parameters:
	Name	Type	Mandatory	Description
	symbol	STRING	YES	
	limit	INT	NO	Default 100; max 5000. If limit > 5000 then the response will truncate to 5000.

Data Source: Memory
Response:
{
 "lastUpdateId": 1027024,
 "bids": [
 [
 "4.00000000", // PRICE
 "431.00000000" // QTY
]
],
 "asks": [
 [
 "4.00000200",
 "12.00000000"
]
]
}

BinanceSpotRest.Endpoints.MarketData.HistoricalTrades.Query

Historical Trades
Old trade lookup
GET /api/v3/historicalTrades
Get older trades.
Weight:
25
Parameters:
	Name	Type	Mandatory	Description
	symbol	STRING	YES	
	limit	INT	NO	Default 500; max 1000.
	fromId	LONG	NO	TradeId to fetch from. Default gets most recent trades.

Data Source:
Database
Response:
[
 {
 "id": 28457,
 "price": "4.00000100",
 "qty": "12.00000000",
 "quoteQty": "48.000012",
 "time": 1499865549590,
 "isBuyerMaker": true,
 "isBestMatch": true
 }
]

BinanceSpotRest.Endpoints.MarketData.Klines.Query

Klines
Kline/Candlestick data
GET /api/v3/klines
Kline/candlestick bars for a symbol.
Klines are uniquely identified by their open time.
Weight:
2
Parameters:
	Name	Type	Mandatory	Description
	symbol	STRING	YES	
	interval	ENUM	YES	
	startTime	LONG	NO	
	endTime	LONG	NO	
	timeZone	STRING	NO	Default: 0 (UTC)
	limit	INT	NO	Default 500; max 1000.

Supported kline intervals (case-sensitive):
	Interval	interval value
	seconds	1s
	minutes	1m, 3m, 5m, 15m, 30m
	hours	1h, 2h, 4h, 6h, 8h, 12h
	days	1d, 3d
	weeks	1w
	months	1M

Notes:
	If startTime and endTime are not sent, the most recent klines are returned.
	Supported values for timeZone:
	Hours and minutes (e.g. -1:00, 05:45)
	Only hours (e.g. 0, 8, 4)
	Accepted range is strictly [-12:00 to +14:00] inclusive
	If timeZone provided, kline intervals are interpreted in that timezone instead of UTC.
	Note that startTime and endTime are always interpreted in UTC, regardless of timeZone.

Data Source:
Database
Response:
[
 [
 1499040000000, // Kline open time
 "0.01634790", // Open price
 "0.80000000", // High price
 "0.01575800", // Low price
 "0.01577100", // Close price
 "148976.11427815", // Volume
 1499644799999, // Kline Close time
 "2434.19055334", // Quote asset volume
 308, // Number of trades
 "1756.87402397", // Taker buy base asset volume
 "28.46694368", // Taker buy quote asset volume
 "0" // Unused field, ignore.
]
]

BinanceSpotRest.Endpoints.MarketData.Ticker.SymbolQuery

Ticker - Symbol query
Rolling window price change statistics
GET /api/v3/ticker
Note: This endpoint is different from the GET /api/v3/ticker/24hr endpoint.
The window used to compute statistics will be no more than 59999ms from the requested windowSize.
openTime for /api/v3/ticker always starts on a minute, while the closeTime is the current time of the request.
As such, the effective window will be up to 59999ms wider than windowSize.
E.g. If the closeTime is 1641287867099 (January 04, 2022 09:17:47:099 UTC) , and the windowSize is 1d. the openTime will be: 1641201420000 (January 3, 2022, 09:17:00)
Weight:
4 for each requested symbol regardless of windowSize.
The weight for this request will cap at 200 once the number of symbols in the request is more than 50.
Data Source:
Database
Full docs: Binance API – ticker

BinanceSpotRest.Endpoints.MarketData.Ticker.SymbolsQuery

Ticker - Symbols query
Rolling window price change statistics
GET /api/v3/ticker
Note: This endpoint is different from the GET /api/v3/ticker/24hr endpoint.
The window used to compute statistics will be no more than 59999ms from the requested windowSize.
openTime for /api/v3/ticker always starts on a minute, while the closeTime is the current time of the request.
As such, the effective window will be up to 59999ms wider than windowSize.
E.g. If the closeTime is 1641287867099 (January 04, 2022 09:17:47:099 UTC) , and the windowSize is 1d. the openTime will be: 1641201420000 (January 3, 2022, 09:17:00)
Weight:
4 for each requested symbol regardless of windowSize.
The weight for this request will cap at 200 once the number of symbols in the request is more than 50.
Data Source:
Database
Full docs: Binance API – ticker

BinanceSpotRest.Endpoints.MarketData.Ticker24Hr.Query_DANGER_LARGE_WEIGHT

Ticker 24 Hr - Query without specify symbol. Weight is 80!
24hr ticker price change statistics
GET /api/v3/ticker/24hr
24 hour rolling window price change statistics. Careful when accessing this with no symbol.
Weight:

 	Parameter
 	Symbols Provided
 	Weight

 	symbol
 	1
 	2

 	symbol parameter is omitted
 	80

 	symbols
 	1-20
 	2

 	21-100
 	40

 	101 or more
 	80

 	symbols parameter is omitted
 	80

Data Source:
Memory
Full docs: Binance API – ticker/24hr

BinanceSpotRest.Endpoints.MarketData.Ticker24Hr.SymbolQuery

Ticker 24 Hr - Symbol query
24hr ticker price change statistics
GET /api/v3/ticker/24hr
24 hour rolling window price change statistics. Careful when accessing this with no symbol.
Weight:

 	Parameter
 	Symbols Provided
 	Weight

 	symbol
 	1
 	2

 	symbol parameter is omitted
 	80

 	symbols
 	1-20
 	2

 	21-100
 	40

 	101 or more
 	80

 	symbols parameter is omitted
 	80

Data Source:
Memory
Full docs: Binance API – ticker/24hr

BinanceSpotRest.Endpoints.MarketData.Ticker24Hr.SymbolsQuery

Ticker 24 Hr - Symbols query
24hr ticker price change statistics
GET /api/v3/ticker/24hr
24 hour rolling window price change statistics. Careful when accessing this with no symbol.
Weight:

 	Parameter
 	Symbols Provided
 	Weight

 	symbol
 	1
 	2

 	symbol parameter is omitted
 	80

 	symbols
 	1-20
 	2

 	21-100
 	40

 	101 or more
 	80

 	symbols parameter is omitted
 	80

Data Source:
Memory
Full docs: Binance API – ticker/24hr

BinanceSpotRest.Endpoints.MarketData.TickerBookTicker.Query

Ticker Book Ticker - Empty query
Symbol order book ticker
GET /api/v3/ticker/bookTicker
Best price/qty on the order book for a symbol or symbols.
Weight:

 	Parameter
 	Symbols Provided
 	Weight

 	symbol
 	1
 	2

 	symbol parameter is omitted
 	4

 	symbols
 	Any
 	4

Data Source:
Memory
Full docs: Binance API – ticker/bookTicker

BinanceSpotRest.Endpoints.MarketData.TickerBookTicker.SymbolQuery

Ticker Book Ticker - Symbol query
Symbol order book ticker
GET /api/v3/ticker/bookTicker
Best price/qty on the order book for a symbol or symbols.
Weight:

 	Parameter
 	Symbols Provided
 	Weight

 	symbol
 	1
 	2

 	symbol parameter is omitted
 	4

 	symbols
 	Any
 	4

Data Source:
Memory
Full docs: Binance API – ticker/bookTicker

BinanceSpotRest.Endpoints.MarketData.TickerBookTicker.SymbolsQuery

Ticker Book Ticker - Symbols query
Symbol order book ticker
GET /api/v3/ticker/bookTicker
Best price/qty on the order book for a symbol or symbols.
Weight:

 	Parameter
 	Symbols Provided
 	Weight

 	symbol
 	1
 	2

 	symbol parameter is omitted
 	4

 	symbols
 	Any
 	4

Data Source:
Memory
Full docs: Binance API – ticker/bookTicker

BinanceSpotRest.Endpoints.MarketData.TickerPrice.Query

Ticker Price - Empty query
Symbol price ticker
GET /api/v3/ticker/price
Latest price for a symbol or symbols.
Weight:

 	Parameter
 	Symbols Provided
 	Weight

 	symbol
 	1
 	2

 	symbol parameter is omitted
 	4

 	symbols
 	Any
 	4

Data Source:
Memory
Full docs: Binance API – ticker/price

BinanceSpotRest.Endpoints.MarketData.TickerPrice.SymbolQuery

Ticker Price - Symbol query
Symbol price ticker
GET /api/v3/ticker/price
Latest price for a symbol or symbols.
Weight:

 	Parameter
 	Symbols Provided
 	Weight

 	symbol
 	1
 	2

 	symbol parameter is omitted
 	4

 	symbols
 	Any
 	4

Data Source:
Memory
Full docs: Binance API – ticker/price

BinanceSpotRest.Endpoints.MarketData.TickerPrice.SymbolsQuery

Ticker Price - Symbols query
Symbol price ticker
GET /api/v3/ticker/price
Latest price for a symbol or symbols.
Weight:

 	Parameter
 	Symbols Provided
 	Weight

 	symbol
 	1
 	2

 	symbol parameter is omitted
 	4

 	symbols
 	Any
 	4

Data Source:
Memory
Full docs: Binance API – ticker/price

BinanceSpotRest.Endpoints.MarketData.TickerTradingDay.SymbolQuery

Ticker Trading Day - Symbol query
Trading Day Ticker
GET /api/v3/ticker/tradingDay
Price change statistics for a trading day.
Weight:
4 for each requested <tt>symbol</tt>.

 The weight for this request will cap at 200 once the number of symbols in the request is more than 50.
Notes:
	Supported values for timeZone:
	Hours and minutes (e.g. -1:00, 05:45)
	Only hours (e.g. 0, 8, 4)

Data Source:
Database
Full docs: Binance API – ticker/tradingDay

BinanceSpotRest.Endpoints.MarketData.TickerTradingDay.SymbolsQuery

Ticker Trading Day - Symbols query
Trading Day Ticker
GET /api/v3/ticker/tradingDay
Price change statistics for a trading day.
Weight:
4 for each requested <tt>symbol</tt>.

 The weight for this request will cap at 200 once the number of symbols in the request is more than 50.
Notes:
	Supported values for timeZone:
	Hours and minutes (e.g. -1:00, 05:45)
	Only hours (e.g. 0, 8, 4)

Data Source:
Database
Full docs: Binance API – ticker/tradingDay

BinanceSpotRest.Endpoints.MarketData.Trades.Query

Trades
Recent trades list
GET /api/v3/trades
Get recent trades.
Weight:
25
Parameters:
	Name	Type	Mandatory	Description
	symbol	STRING	YES	
	limit	INT	NO	Default 500; max 1000.

Data Source:
Memory
Response:
[
 {
 "id": 28457,
 "price": "4.00000100",
 "qty": "12.00000000",
 "quoteQty": "48.000012",
 "time": 1499865549590,
 "isBuyerMaker": true,
 "isBestMatch": true
 }
]

BinanceSpotRest.Endpoints.MarketData.UiKlines.Query

Ui Klines
UIKlines
GET /api/v3/uiKlines
The request is similar to klines having the same parameters and response.
uiKlines return modified kline data, optimized for presentation of candlestick charts.
Weight:
2
Parameters:
	Name	Type	Mandatory	Description
	symbol	STRING	YES	
	interval	ENUM	YES	See klines
	startTime	LONG	NO	
	endTime	LONG	NO	
	timeZone	STRING	NO	Default: 0 (UTC)
	limit	INT	NO	Default 500; max 1000.

	If startTime and endTime are not sent, the most recent klines are returned.
	Supported values for timeZone:
	Hours and minutes (e.g. -1:00, 05:45)
	Only hours (e.g. 0, 8, 4)
	Accepted range is strictly [-12:00 to +14:00] inclusive
	If timeZone provided, kline intervals are interpreted in that timezone instead of UTC.
	Note that startTime and endTime are always interpreted in UTC, regardless of timeZone.

Data Source:
Database
Response:
[
 [
 1499040000000, // Kline open time
 "0.01634790", // Open price
 "0.80000000", // High price
 "0.01575800", // Low price
 "0.01577100", // Close price
 "148976.11427815", // Volume
 1499644799999, // Kline close time
 "2434.19055334", // Quote asset volume
 308, // Number of trades
 "1756.87402397", // Taker buy base asset volume
 "28.46694368", // Taker buy quote asset volume
 "0" // Unused field. Ignore.
]
]

BinanceSpotRest.Endpoints.Trading.OpenOrdersDelete.Query

Open Orders (delete)
Cancel All Open Orders on a Symbol (TRADE)
DELETE /api/v3/openOrders
Cancels all active orders on a symbol.
This includes orders that are part of an order list.
Weight:
1
Parameters:
	Name	Type	Mandatory	Description
	symbol	STRING	YES	
	recvWindow	LONG	NO	The value cannot be greater than 60000
	timestamp	LONG	YES	

Data Source:
Matching Engine
Full docs: Binance API – openOrders DELETE

BinanceSpotRest.Endpoints.Trading.OrderAmendKeepPriorityPut.Query

Order Amend Keep Priority (put)
Order Amend Keep Priority (TRADE)
PUT /api/v3/order/amend/keepPriority
Reduce the quantity of an existing open order.
This adds 0 orders to the EXCHANGE_MAX_ORDERS filter and the MAX_NUM_ORDERS filter.
Weight:
4
Unfilled Order Count:
0
Data Source: Matching Engine
Full docs: Binance API – order/amend/keepPriority

BinanceSpotRest.Endpoints.Trading.OrderCancelReplacePost.LimitMakerQuery

Order Cancel Replace (post) - Limit maker order
Cancel an Existing Order and Send a New Order (TRADE)
POST /api/v3/order/cancelReplace
Cancels an existing order and places a new order on the same symbol.
Filters and Order Count are evaluated before the processing of the cancellation and order placement occurs.
A new order that was not attempted (i.e. when newOrderResult: NOT_ATTEMPTED), will still increase the order count by 1.
Weight:
1
Parameters - same as order
Parameters - aditional (endpoint specific):
	Name	Type	Mandatory	Description
	cancelReplaceMode	ENUM	YES	The allowed values are:
 STOP_ON_FAILURE - If the cancel request fails, the new order placement will not be attempted.
 ALLOW_FAILURE - new order placement will be attempted even if cancel request fails.
	cancelNewClientOrderId	STRING	NO	Used to uniquely identify this cancel. Automatically generated by default.
	cancelOrigClientOrderId	STRING	NO	Either the cancelOrigClientOrderId or cancelOrderId must be provided. If both are provided, cancelOrderId takes precedence.
	cancelOrderId	LONG	NO	Either the cancelOrigClientOrderId or cancelOrderId must be provided. If both are provided, cancelOrderId takes precedence.
	cancelRestrictions	ENUM	NO	Supported values:
ONLY_NEW - Cancel will succeed if the order status is NEW.
 ONLY_PARTIALLY_FILLED - Cancel will succeed if order status is PARTIALLY_FILLED. For more information please refer to Regarding cancelRestrictions
	orderRateLimitExceededMode	ENUM	No	Supported values:
 DO_NOTHING (default)- will only attempt to cancel the order if account has not exceeded the unfilled order rate limit
 CANCEL_ONLY - will always cancel the order

Similar to POST /api/v3/order, additional mandatory parameters are determined by type.
Response format varies depending on whether the processing of the message succeeded, partially succeeded, or failed.
Data Source:
Matching Engine
Full docs: Binance API – order/cancelReplace

BinanceSpotRest.Endpoints.Trading.OrderCancelReplacePost.LimitQuery

Order Cancel Replace (post) - Limit query
Cancel an Existing Order and Send a New Order (TRADE)
POST /api/v3/order/cancelReplace
Cancels an existing order and places a new order on the same symbol.
Filters and Order Count are evaluated before the processing of the cancellation and order placement occurs.
A new order that was not attempted (i.e. when newOrderResult: NOT_ATTEMPTED), will still increase the order count by 1.
Weight:
1
Parameters - same as order
Parameters - aditional (endpoint specific):
	Name	Type	Mandatory	Description
	cancelReplaceMode	ENUM	YES	The allowed values are:
 STOP_ON_FAILURE - If the cancel request fails, the new order placement will not be attempted.
 ALLOW_FAILURE - new order placement will be attempted even if cancel request fails.
	cancelNewClientOrderId	STRING	NO	Used to uniquely identify this cancel. Automatically generated by default.
	cancelOrigClientOrderId	STRING	NO	Either the cancelOrigClientOrderId or cancelOrderId must be provided. If both are provided, cancelOrderId takes precedence.
	cancelOrderId	LONG	NO	Either the cancelOrigClientOrderId or cancelOrderId must be provided. If both are provided, cancelOrderId takes precedence.
	cancelRestrictions	ENUM	NO	Supported values:
ONLY_NEW - Cancel will succeed if the order status is NEW.
 ONLY_PARTIALLY_FILLED - Cancel will succeed if order status is PARTIALLY_FILLED. For more information please refer to Regarding cancelRestrictions
	orderRateLimitExceededMode	ENUM	No	Supported values:
 DO_NOTHING (default)- will only attempt to cancel the order if account has not exceeded the unfilled order rate limit
 CANCEL_ONLY - will always cancel the order

Similar to POST /api/v3/order, additional mandatory parameters are determined by type.
Response format varies depending on whether the processing of the message succeeded, partially succeeded, or failed.
Data Source:
Matching Engine
Full docs: Binance API – order/cancelReplace

BinanceSpotRest.Endpoints.Trading.OrderCancelReplacePost.MarketQuery

Order Cancel Replace (post) - Market query
Cancel an Existing Order and Send a New Order (TRADE)
POST /api/v3/order/cancelReplace
Cancels an existing order and places a new order on the same symbol.
Filters and Order Count are evaluated before the processing of the cancellation and order placement occurs.
A new order that was not attempted (i.e. when newOrderResult: NOT_ATTEMPTED), will still increase the order count by 1.
Weight:
1
Parameters - same as order
Parameters - aditional (endpoint specific):
	Name	Type	Mandatory	Description
	cancelReplaceMode	ENUM	YES	The allowed values are:
 STOP_ON_FAILURE - If the cancel request fails, the new order placement will not be attempted.
 ALLOW_FAILURE - new order placement will be attempted even if cancel request fails.
	cancelNewClientOrderId	STRING	NO	Used to uniquely identify this cancel. Automatically generated by default.
	cancelOrigClientOrderId	STRING	NO	Either the cancelOrigClientOrderId or cancelOrderId must be provided. If both are provided, cancelOrderId takes precedence.
	cancelOrderId	LONG	NO	Either the cancelOrigClientOrderId or cancelOrderId must be provided. If both are provided, cancelOrderId takes precedence.
	cancelRestrictions	ENUM	NO	Supported values:
ONLY_NEW - Cancel will succeed if the order status is NEW.
 ONLY_PARTIALLY_FILLED - Cancel will succeed if order status is PARTIALLY_FILLED. For more information please refer to Regarding cancelRestrictions
	orderRateLimitExceededMode	ENUM	No	Supported values:
 DO_NOTHING (default)- will only attempt to cancel the order if account has not exceeded the unfilled order rate limit
 CANCEL_ONLY - will always cancel the order

Similar to POST /api/v3/order, additional mandatory parameters are determined by type.
Response format varies depending on whether the processing of the message succeeded, partially succeeded, or failed.
Data Source:
Matching Engine
Full docs: Binance API – order/cancelReplace

BinanceSpotRest.Endpoints.Trading.OrderCancelReplacePost.StopLossLimitQuery

Order Cancel Replace (post) - Stop loss limit query
Cancel an Existing Order and Send a New Order (TRADE)
POST /api/v3/order/cancelReplace
Cancels an existing order and places a new order on the same symbol.
Filters and Order Count are evaluated before the processing of the cancellation and order placement occurs.
A new order that was not attempted (i.e. when newOrderResult: NOT_ATTEMPTED), will still increase the order count by 1.
Weight:
1
Parameters - same as order
Parameters - aditional (endpoint specific):
	Name	Type	Mandatory	Description
	cancelReplaceMode	ENUM	YES	The allowed values are:
 STOP_ON_FAILURE - If the cancel request fails, the new order placement will not be attempted.
 ALLOW_FAILURE - new order placement will be attempted even if cancel request fails.
	cancelNewClientOrderId	STRING	NO	Used to uniquely identify this cancel. Automatically generated by default.
	cancelOrigClientOrderId	STRING	NO	Either the cancelOrigClientOrderId or cancelOrderId must be provided. If both are provided, cancelOrderId takes precedence.
	cancelOrderId	LONG	NO	Either the cancelOrigClientOrderId or cancelOrderId must be provided. If both are provided, cancelOrderId takes precedence.
	cancelRestrictions	ENUM	NO	Supported values:
ONLY_NEW - Cancel will succeed if the order status is NEW.
 ONLY_PARTIALLY_FILLED - Cancel will succeed if order status is PARTIALLY_FILLED. For more information please refer to Regarding cancelRestrictions
	orderRateLimitExceededMode	ENUM	No	Supported values:
 DO_NOTHING (default)- will only attempt to cancel the order if account has not exceeded the unfilled order rate limit
 CANCEL_ONLY - will always cancel the order

Similar to POST /api/v3/order, additional mandatory parameters are determined by type.
Response format varies depending on whether the processing of the message succeeded, partially succeeded, or failed.
Data Source:
Matching Engine
Full docs: Binance API – order/cancelReplace

BinanceSpotRest.Endpoints.Trading.OrderCancelReplacePost.StopLossQuery

Order Cancel Replace (post) - Stop loss query
Cancel an Existing Order and Send a New Order (TRADE)
POST /api/v3/order/cancelReplace
Cancels an existing order and places a new order on the same symbol.
Filters and Order Count are evaluated before the processing of the cancellation and order placement occurs.
A new order that was not attempted (i.e. when newOrderResult: NOT_ATTEMPTED), will still increase the order count by 1.
Weight:
1
Parameters - same as order
Parameters - aditional (endpoint specific):
	Name	Type	Mandatory	Description
	cancelReplaceMode	ENUM	YES	The allowed values are:
 STOP_ON_FAILURE - If the cancel request fails, the new order placement will not be attempted.
 ALLOW_FAILURE - new order placement will be attempted even if cancel request fails.
	cancelNewClientOrderId	STRING	NO	Used to uniquely identify this cancel. Automatically generated by default.
	cancelOrigClientOrderId	STRING	NO	Either the cancelOrigClientOrderId or cancelOrderId must be provided. If both are provided, cancelOrderId takes precedence.
	cancelOrderId	LONG	NO	Either the cancelOrigClientOrderId or cancelOrderId must be provided. If both are provided, cancelOrderId takes precedence.
	cancelRestrictions	ENUM	NO	Supported values:
ONLY_NEW - Cancel will succeed if the order status is NEW.
 ONLY_PARTIALLY_FILLED - Cancel will succeed if order status is PARTIALLY_FILLED. For more information please refer to Regarding cancelRestrictions
	orderRateLimitExceededMode	ENUM	No	Supported values:
 DO_NOTHING (default)- will only attempt to cancel the order if account has not exceeded the unfilled order rate limit
 CANCEL_ONLY - will always cancel the order

Similar to POST /api/v3/order, additional mandatory parameters are determined by type.
Response format varies depending on whether the processing of the message succeeded, partially succeeded, or failed.
Data Source:
Matching Engine
Full docs: Binance API – order/cancelReplace

BinanceSpotRest.Endpoints.Trading.OrderCancelReplacePost.TakeProfitLimitQuery

Order Cancel Replace (post) - Take profit limit query
Cancel an Existing Order and Send a New Order (TRADE)
POST /api/v3/order/cancelReplace
Cancels an existing order and places a new order on the same symbol.
Filters and Order Count are evaluated before the processing of the cancellation and order placement occurs.
A new order that was not attempted (i.e. when newOrderResult: NOT_ATTEMPTED), will still increase the order count by 1.
Weight:
1
Parameters - same as order
Parameters - aditional (endpoint specific):
	Name	Type	Mandatory	Description
	cancelReplaceMode	ENUM	YES	The allowed values are:
 STOP_ON_FAILURE - If the cancel request fails, the new order placement will not be attempted.
 ALLOW_FAILURE - new order placement will be attempted even if cancel request fails.
	cancelNewClientOrderId	STRING	NO	Used to uniquely identify this cancel. Automatically generated by default.
	cancelOrigClientOrderId	STRING	NO	Either the cancelOrigClientOrderId or cancelOrderId must be provided. If both are provided, cancelOrderId takes precedence.
	cancelOrderId	LONG	NO	Either the cancelOrigClientOrderId or cancelOrderId must be provided. If both are provided, cancelOrderId takes precedence.
	cancelRestrictions	ENUM	NO	Supported values:
ONLY_NEW - Cancel will succeed if the order status is NEW.
 ONLY_PARTIALLY_FILLED - Cancel will succeed if order status is PARTIALLY_FILLED. For more information please refer to Regarding cancelRestrictions
	orderRateLimitExceededMode	ENUM	No	Supported values:
 DO_NOTHING (default)- will only attempt to cancel the order if account has not exceeded the unfilled order rate limit
 CANCEL_ONLY - will always cancel the order

Similar to POST /api/v3/order, additional mandatory parameters are determined by type.
Response format varies depending on whether the processing of the message succeeded, partially succeeded, or failed.
Data Source:
Matching Engine
Full docs: Binance API – order/cancelReplace

BinanceSpotRest.Endpoints.Trading.OrderCancelReplacePost.TakeProfitQuery

Order Cancel Replace (post) - Take profit query
Cancel an Existing Order and Send a New Order (TRADE)
POST /api/v3/order/cancelReplace
Cancels an existing order and places a new order on the same symbol.
Filters and Order Count are evaluated before the processing of the cancellation and order placement occurs.
A new order that was not attempted (i.e. when newOrderResult: NOT_ATTEMPTED), will still increase the order count by 1.
Weight:
1
Parameters - same as order
Parameters - aditional (endpoint specific):
	Name	Type	Mandatory	Description
	cancelReplaceMode	ENUM	YES	The allowed values are:
 STOP_ON_FAILURE - If the cancel request fails, the new order placement will not be attempted.
 ALLOW_FAILURE - new order placement will be attempted even if cancel request fails.
	cancelNewClientOrderId	STRING	NO	Used to uniquely identify this cancel. Automatically generated by default.
	cancelOrigClientOrderId	STRING	NO	Either the cancelOrigClientOrderId or cancelOrderId must be provided. If both are provided, cancelOrderId takes precedence.
	cancelOrderId	LONG	NO	Either the cancelOrigClientOrderId or cancelOrderId must be provided. If both are provided, cancelOrderId takes precedence.
	cancelRestrictions	ENUM	NO	Supported values:
ONLY_NEW - Cancel will succeed if the order status is NEW.
 ONLY_PARTIALLY_FILLED - Cancel will succeed if order status is PARTIALLY_FILLED. For more information please refer to Regarding cancelRestrictions
	orderRateLimitExceededMode	ENUM	No	Supported values:
 DO_NOTHING (default)- will only attempt to cancel the order if account has not exceeded the unfilled order rate limit
 CANCEL_ONLY - will always cancel the order

Similar to POST /api/v3/order, additional mandatory parameters are determined by type.
Response format varies depending on whether the processing of the message succeeded, partially succeeded, or failed.
Data Source:
Matching Engine
Full docs: Binance API – order/cancelReplace

BinanceSpotRest.Endpoints.Trading.OrderDelete.Query

Order (delete)
Cancel order (TRADE)
DELETE /api/v3/order
Cancel an active order.
Weight:
1
Parameters:
	Name	Type	Mandatory	Description
	symbol	STRING	YES	
	orderId	LONG	NO	
	origClientOrderId	STRING	NO	
	newClientOrderId	STRING	NO	Used to uniquely identify this cancel. Automatically generated by default.
	cancelRestrictions	ENUM	NO	Supported values:
ONLY_NEW - Cancel will succeed if the order status is NEW.
 ONLY_PARTIALLY_FILLED - Cancel will succeed if order status is PARTIALLY_FILLED.
	recvWindow	LONG	NO	The value cannot be greater than 60000.
	timestamp	LONG	YES	

Either orderId or origClientOrderId must be sent.
If both parameters are sent, orderId takes precedence.
Data Source:
Matching Engine
Response:
{
 "symbol": "LTCBTC",
 "origClientOrderId": "myOrder1",
 "orderId": 4,
 "orderListId": -1, // Unless it's part of an order list, value will be -1
 "clientOrderId": "cancelMyOrder1",
 "transactTime": 1684804350068,
 "price": "2.00000000",
 "origQty": "1.00000000",
 "executedQty": "0.00000000",
 "cummulativeQuoteQty": "0.00000000",
 "status": "CANCELED",
 "timeInForce": "GTC",
 "type": "LIMIT",
 "side": "BUY",
 "selfTradePreventionMode": "NONE"
}
Note: The payload above does not show all fields that can appear in the order response. Please refer to Conditional fields in Order Responses.
Regarding cancelRestrictions
	If the cancelRestrictions value is not any of the supported values, the error will be:

{
 "code": -1145,
 "msg": "Invalid cancelRestrictions"
}
	If the order did not pass the conditions for cancelRestrictions, the error will be:

{
 "code": -2011,
 "msg": "Order was not canceled due to cancel restrictions."
}

BinanceSpotRest.Endpoints.Trading.OrderListDelete.Query

Order List (delete)
Cancel Order list (TRADE)
DELETE /api/v3/orderList
Cancel an entire Order list
Weight:
1
Parameters:
	Name	Type	Mandatory	Description
	symbol	STRING	YES	
	orderListId	LONG	NO	Either orderListId or listClientOrderId must be provided
	listClientOrderId	STRING	NO	Either orderListId or listClientOrderId must be provided
	newClientOrderId	STRING	NO	Used to uniquely identify this cancel. Automatically generated by default
	recvWindow	LONG	NO	The value cannot be greater than 60000
	timestamp	LONG	YES	

Notes:
	Canceling an individual order from an order list will cancel the entire order list.
	If both orderListId and listClientOrderId parameters are provided, the orderListId is searched first, then the listClientOrderId from that result is checked against that order. If both conditions are not met the request will be rejected.

Data Source:
Matching Engine
Full docs: Binance API – orderList DELETE

BinanceSpotRest.Endpoints.Trading.OrderListOcoPost.AboveLimitMakerBelowStopLossLimitQuery

Order List Oco (post) - Above limit maker below stop loss limit query
 ### New Order list - OCO (TRADE)
POST /api/v3/orderList/oco
Send in an one-cancels-the-other (OCO) pair, where activation of one order immediately cancels the other.
	An OCO has 2 orders called the above order and below order.
	One of the orders must be a LIMIT_MAKER/TAKE_PROFIT/TAKE_PROFIT_LIMIT order and the other must be STOP_LOSS or STOP_LOSS_LIMIT order.
	Price restrictions (MODIFIED: it is wrong in original docs)
	If the OCO is on the SELL side:	LIMIT_MAKER price (above) > Last Traded Price > STOP_LOSS/STOP_LOSS_LIMIT stopPrice (below)
	TAKE_PROFIT/TAKE_PROFIT_LIMIT stopPrice (above) > Last Traded Price > STOP_LOSS/STOP_LOSS_LIMIT stopPrice (below)

	If the OCO is on the BUY side:	LIMIT_MAKER price (below) < Last Traded Price < stopPrice (above)
	TAKE_PROFIT/TAKE_PROFIT_LIMIT stopPrice (below) < Last Traded Price < STOP_LOSS/STOP_LOSS_LIMIT stopPrice (above)

	OCOs add 2 orders to the unfilled order count, EXCHANGE_MAX_ORDERS filter, and the MAX_NUM_ORDERS filter.

Weight:
1
Data Source:
Matching Engine
Full docs: Binance API – orderList/oco POST

BinanceSpotRest.Endpoints.Trading.OrderListOcoPost.AboveLimitMakerBelowStopLossQuery

Order List Oco (post) - Above limit maker below stop loss query
 ### New Order list - OCO (TRADE)
POST /api/v3/orderList/oco
Send in an one-cancels-the-other (OCO) pair, where activation of one order immediately cancels the other.
	An OCO has 2 orders called the above order and below order.
	One of the orders must be a LIMIT_MAKER/TAKE_PROFIT/TAKE_PROFIT_LIMIT order and the other must be STOP_LOSS or STOP_LOSS_LIMIT order.
	Price restrictions (MODIFIED: it is wrong in original docs)
	If the OCO is on the SELL side:	LIMIT_MAKER price (above) > Last Traded Price > STOP_LOSS/STOP_LOSS_LIMIT stopPrice (below)
	TAKE_PROFIT/TAKE_PROFIT_LIMIT stopPrice (above) > Last Traded Price > STOP_LOSS/STOP_LOSS_LIMIT stopPrice (below)

	If the OCO is on the BUY side:	LIMIT_MAKER price (below) < Last Traded Price < stopPrice (above)
	TAKE_PROFIT/TAKE_PROFIT_LIMIT stopPrice (below) < Last Traded Price < STOP_LOSS/STOP_LOSS_LIMIT stopPrice (above)

	OCOs add 2 orders to the unfilled order count, EXCHANGE_MAX_ORDERS filter, and the MAX_NUM_ORDERS filter.

Weight:
1
Data Source:
Matching Engine
Full docs: Binance API – orderList/oco POST

BinanceSpotRest.Endpoints.Trading.OrderListOcoPost.AboveStopLossBelowLimitMakerQuery

Order List Oco (post) - Above stop loss below limit maker query
 ### New Order list - OCO (TRADE)
POST /api/v3/orderList/oco
Send in an one-cancels-the-other (OCO) pair, where activation of one order immediately cancels the other.
	An OCO has 2 orders called the above order and below order.
	One of the orders must be a LIMIT_MAKER/TAKE_PROFIT/TAKE_PROFIT_LIMIT order and the other must be STOP_LOSS or STOP_LOSS_LIMIT order.
	Price restrictions (MODIFIED: it is wrong in original docs)
	If the OCO is on the SELL side:	LIMIT_MAKER price (above) > Last Traded Price > STOP_LOSS/STOP_LOSS_LIMIT stopPrice (below)
	TAKE_PROFIT/TAKE_PROFIT_LIMIT stopPrice (above) > Last Traded Price > STOP_LOSS/STOP_LOSS_LIMIT stopPrice (below)

	If the OCO is on the BUY side:	LIMIT_MAKER price (below) < Last Traded Price < stopPrice (above)
	TAKE_PROFIT/TAKE_PROFIT_LIMIT stopPrice (below) < Last Traded Price < STOP_LOSS/STOP_LOSS_LIMIT stopPrice (above)

	OCOs add 2 orders to the unfilled order count, EXCHANGE_MAX_ORDERS filter, and the MAX_NUM_ORDERS filter.

Weight:
1
Data Source:
Matching Engine
Full docs: Binance API – orderList/oco POST

BinanceSpotRest.Endpoints.Trading.OrderListOcoPost.AboveStopLossBelowTakeProfitLimitQuery

Order List Oco (post) - Above stop loss below take profit limit query
 ### New Order list - OCO (TRADE)
POST /api/v3/orderList/oco
Send in an one-cancels-the-other (OCO) pair, where activation of one order immediately cancels the other.
	An OCO has 2 orders called the above order and below order.
	One of the orders must be a LIMIT_MAKER/TAKE_PROFIT/TAKE_PROFIT_LIMIT order and the other must be STOP_LOSS or STOP_LOSS_LIMIT order.
	Price restrictions (MODIFIED: it is wrong in original docs)
	If the OCO is on the SELL side:	LIMIT_MAKER price (above) > Last Traded Price > STOP_LOSS/STOP_LOSS_LIMIT stopPrice (below)
	TAKE_PROFIT/TAKE_PROFIT_LIMIT stopPrice (above) > Last Traded Price > STOP_LOSS/STOP_LOSS_LIMIT stopPrice (below)

	If the OCO is on the BUY side:	LIMIT_MAKER price (below) < Last Traded Price < stopPrice (above)
	TAKE_PROFIT/TAKE_PROFIT_LIMIT stopPrice (below) < Last Traded Price < STOP_LOSS/STOP_LOSS_LIMIT stopPrice (above)

	OCOs add 2 orders to the unfilled order count, EXCHANGE_MAX_ORDERS filter, and the MAX_NUM_ORDERS filter.

Weight:
1
Data Source:
Matching Engine
Full docs: Binance API – orderList/oco POST

BinanceSpotRest.Endpoints.Trading.OrderListOcoPost.AboveStopLossBelowTakeProfitQuery

Order List Oco (post) - Above stop loss below take profit query
 ### New Order list - OCO (TRADE)
POST /api/v3/orderList/oco
Send in an one-cancels-the-other (OCO) pair, where activation of one order immediately cancels the other.
	An OCO has 2 orders called the above order and below order.
	One of the orders must be a LIMIT_MAKER/TAKE_PROFIT/TAKE_PROFIT_LIMIT order and the other must be STOP_LOSS or STOP_LOSS_LIMIT order.
	Price restrictions (MODIFIED: it is wrong in original docs)
	If the OCO is on the SELL side:	LIMIT_MAKER price (above) > Last Traded Price > STOP_LOSS/STOP_LOSS_LIMIT stopPrice (below)
	TAKE_PROFIT/TAKE_PROFIT_LIMIT stopPrice (above) > Last Traded Price > STOP_LOSS/STOP_LOSS_LIMIT stopPrice (below)

	If the OCO is on the BUY side:	LIMIT_MAKER price (below) < Last Traded Price < stopPrice (above)
	TAKE_PROFIT/TAKE_PROFIT_LIMIT stopPrice (below) < Last Traded Price < STOP_LOSS/STOP_LOSS_LIMIT stopPrice (above)

	OCOs add 2 orders to the unfilled order count, EXCHANGE_MAX_ORDERS filter, and the MAX_NUM_ORDERS filter.

Weight:
1
Data Source:
Matching Engine
Full docs: Binance API – orderList/oco POST

BinanceSpotRest.Endpoints.Trading.OrderListOcoPost.AboveStopLossLimitBelowLimitMakerQuery

Order List Oco (post) - Above stop loss limit below limit maker query
 ### New Order list - OCO (TRADE)
POST /api/v3/orderList/oco
Send in an one-cancels-the-other (OCO) pair, where activation of one order immediately cancels the other.
	An OCO has 2 orders called the above order and below order.
	One of the orders must be a LIMIT_MAKER/TAKE_PROFIT/TAKE_PROFIT_LIMIT order and the other must be STOP_LOSS or STOP_LOSS_LIMIT order.
	Price restrictions (MODIFIED: it is wrong in original docs)
	If the OCO is on the SELL side:	LIMIT_MAKER price (above) > Last Traded Price > STOP_LOSS/STOP_LOSS_LIMIT stopPrice (below)
	TAKE_PROFIT/TAKE_PROFIT_LIMIT stopPrice (above) > Last Traded Price > STOP_LOSS/STOP_LOSS_LIMIT stopPrice (below)

	If the OCO is on the BUY side:	LIMIT_MAKER price (below) < Last Traded Price < stopPrice (above)
	TAKE_PROFIT/TAKE_PROFIT_LIMIT stopPrice (below) < Last Traded Price < STOP_LOSS/STOP_LOSS_LIMIT stopPrice (above)

	OCOs add 2 orders to the unfilled order count, EXCHANGE_MAX_ORDERS filter, and the MAX_NUM_ORDERS filter.

Weight:
1
Data Source:
Matching Engine
Full docs: Binance API – orderList/oco POST

BinanceSpotRest.Endpoints.Trading.OrderListOcoPost.AboveStopLossLimitBelowTakeProfitLimitQuery

Order List Oco (post) - Above stop loss limit below take profit limit query
 ### New Order list - OCO (TRADE)
POST /api/v3/orderList/oco
Send in an one-cancels-the-other (OCO) pair, where activation of one order immediately cancels the other.
	An OCO has 2 orders called the above order and below order.
	One of the orders must be a LIMIT_MAKER/TAKE_PROFIT/TAKE_PROFIT_LIMIT order and the other must be STOP_LOSS or STOP_LOSS_LIMIT order.
	Price restrictions (MODIFIED: it is wrong in original docs)
	If the OCO is on the SELL side:	LIMIT_MAKER price (above) > Last Traded Price > STOP_LOSS/STOP_LOSS_LIMIT stopPrice (below)
	TAKE_PROFIT/TAKE_PROFIT_LIMIT stopPrice (above) > Last Traded Price > STOP_LOSS/STOP_LOSS_LIMIT stopPrice (below)

	If the OCO is on the BUY side:	LIMIT_MAKER price (below) < Last Traded Price < stopPrice (above)
	TAKE_PROFIT/TAKE_PROFIT_LIMIT stopPrice (below) < Last Traded Price < STOP_LOSS/STOP_LOSS_LIMIT stopPrice (above)

	OCOs add 2 orders to the unfilled order count, EXCHANGE_MAX_ORDERS filter, and the MAX_NUM_ORDERS filter.

Weight:
1
Data Source:
Matching Engine
Full docs: Binance API – orderList/oco POST

BinanceSpotRest.Endpoints.Trading.OrderListOcoPost.AboveStopLossLimitBelowTakeProfitQuery

Order List Oco (post) - Above stop loss limit below take profit query
 ### New Order list - OCO (TRADE)
POST /api/v3/orderList/oco
Send in an one-cancels-the-other (OCO) pair, where activation of one order immediately cancels the other.
	An OCO has 2 orders called the above order and below order.
	One of the orders must be a LIMIT_MAKER/TAKE_PROFIT/TAKE_PROFIT_LIMIT order and the other must be STOP_LOSS or STOP_LOSS_LIMIT order.
	Price restrictions (MODIFIED: it is wrong in original docs)
	If the OCO is on the SELL side:	LIMIT_MAKER price (above) > Last Traded Price > STOP_LOSS/STOP_LOSS_LIMIT stopPrice (below)
	TAKE_PROFIT/TAKE_PROFIT_LIMIT stopPrice (above) > Last Traded Price > STOP_LOSS/STOP_LOSS_LIMIT stopPrice (below)

	If the OCO is on the BUY side:	LIMIT_MAKER price (below) < Last Traded Price < stopPrice (above)
	TAKE_PROFIT/TAKE_PROFIT_LIMIT stopPrice (below) < Last Traded Price < STOP_LOSS/STOP_LOSS_LIMIT stopPrice (above)

	OCOs add 2 orders to the unfilled order count, EXCHANGE_MAX_ORDERS filter, and the MAX_NUM_ORDERS filter.

Weight:
1
Data Source:
Matching Engine
Full docs: Binance API – orderList/oco POST

BinanceSpotRest.Endpoints.Trading.OrderListOcoPost.AboveTakeProfitBelowStopLossLimitQuery

Order List Oco (post) - Above take profit below stop loss limit query
 ### New Order list - OCO (TRADE)
POST /api/v3/orderList/oco
Send in an one-cancels-the-other (OCO) pair, where activation of one order immediately cancels the other.
	An OCO has 2 orders called the above order and below order.
	One of the orders must be a LIMIT_MAKER/TAKE_PROFIT/TAKE_PROFIT_LIMIT order and the other must be STOP_LOSS or STOP_LOSS_LIMIT order.
	Price restrictions (MODIFIED: it is wrong in original docs)
	If the OCO is on the SELL side:	LIMIT_MAKER price (above) > Last Traded Price > STOP_LOSS/STOP_LOSS_LIMIT stopPrice (below)
	TAKE_PROFIT/TAKE_PROFIT_LIMIT stopPrice (above) > Last Traded Price > STOP_LOSS/STOP_LOSS_LIMIT stopPrice (below)

	If the OCO is on the BUY side:	LIMIT_MAKER price (below) < Last Traded Price < stopPrice (above)
	TAKE_PROFIT/TAKE_PROFIT_LIMIT stopPrice (below) < Last Traded Price < STOP_LOSS/STOP_LOSS_LIMIT stopPrice (above)

	OCOs add 2 orders to the unfilled order count, EXCHANGE_MAX_ORDERS filter, and the MAX_NUM_ORDERS filter.

Weight:
1
Data Source:
Matching Engine
Full docs: Binance API – orderList/oco POST

BinanceSpotRest.Endpoints.Trading.OrderListOcoPost.AboveTakeProfitBelowStopLossQuery

Order List Oco (post) - Above take profit below stop loss query
 ### New Order list - OCO (TRADE)
POST /api/v3/orderList/oco
Send in an one-cancels-the-other (OCO) pair, where activation of one order immediately cancels the other.
	An OCO has 2 orders called the above order and below order.
	One of the orders must be a LIMIT_MAKER/TAKE_PROFIT/TAKE_PROFIT_LIMIT order and the other must be STOP_LOSS or STOP_LOSS_LIMIT order.
	Price restrictions (MODIFIED: it is wrong in original docs)
	If the OCO is on the SELL side:	LIMIT_MAKER price (above) > Last Traded Price > STOP_LOSS/STOP_LOSS_LIMIT stopPrice (below)
	TAKE_PROFIT/TAKE_PROFIT_LIMIT stopPrice (above) > Last Traded Price > STOP_LOSS/STOP_LOSS_LIMIT stopPrice (below)

	If the OCO is on the BUY side:	LIMIT_MAKER price (below) < Last Traded Price < stopPrice (above)
	TAKE_PROFIT/TAKE_PROFIT_LIMIT stopPrice (below) < Last Traded Price < STOP_LOSS/STOP_LOSS_LIMIT stopPrice (above)

	OCOs add 2 orders to the unfilled order count, EXCHANGE_MAX_ORDERS filter, and the MAX_NUM_ORDERS filter.

Weight:
1
Data Source:
Matching Engine
Full docs: Binance API – orderList/oco POST

BinanceSpotRest.Endpoints.Trading.OrderListOcoPost.AboveTakeProfitLimitBelowStopLossLimitQuery

Order List Oco (post) - Above take profit limit below stop loss limit query
 ### New Order list - OCO (TRADE)
POST /api/v3/orderList/oco
Send in an one-cancels-the-other (OCO) pair, where activation of one order immediately cancels the other.
	An OCO has 2 orders called the above order and below order.
	One of the orders must be a LIMIT_MAKER/TAKE_PROFIT/TAKE_PROFIT_LIMIT order and the other must be STOP_LOSS or STOP_LOSS_LIMIT order.
	Price restrictions (MODIFIED: it is wrong in original docs)
	If the OCO is on the SELL side:	LIMIT_MAKER price (above) > Last Traded Price > STOP_LOSS/STOP_LOSS_LIMIT stopPrice (below)
	TAKE_PROFIT/TAKE_PROFIT_LIMIT stopPrice (above) > Last Traded Price > STOP_LOSS/STOP_LOSS_LIMIT stopPrice (below)

	If the OCO is on the BUY side:	LIMIT_MAKER price (below) < Last Traded Price < stopPrice (above)
	TAKE_PROFIT/TAKE_PROFIT_LIMIT stopPrice (below) < Last Traded Price < STOP_LOSS/STOP_LOSS_LIMIT stopPrice (above)

	OCOs add 2 orders to the unfilled order count, EXCHANGE_MAX_ORDERS filter, and the MAX_NUM_ORDERS filter.

Weight:
1
Data Source:
Matching Engine
Full docs: Binance API – orderList/oco POST

BinanceSpotRest.Endpoints.Trading.OrderListOcoPost.AboveTakeProfitLimitBelowStopLossQuery

Order List Oco (post) - Above take profit limit below stop loss query
 ### New Order list - OCO (TRADE)
POST /api/v3/orderList/oco
Send in an one-cancels-the-other (OCO) pair, where activation of one order immediately cancels the other.
	An OCO has 2 orders called the above order and below order.
	One of the orders must be a LIMIT_MAKER/TAKE_PROFIT/TAKE_PROFIT_LIMIT order and the other must be STOP_LOSS or STOP_LOSS_LIMIT order.
	Price restrictions (MODIFIED: it is wrong in original docs)
	If the OCO is on the SELL side:	LIMIT_MAKER price (above) > Last Traded Price > STOP_LOSS/STOP_LOSS_LIMIT stopPrice (below)
	TAKE_PROFIT/TAKE_PROFIT_LIMIT stopPrice (above) > Last Traded Price > STOP_LOSS/STOP_LOSS_LIMIT stopPrice (below)

	If the OCO is on the BUY side:	LIMIT_MAKER price (below) < Last Traded Price < stopPrice (above)
	TAKE_PROFIT/TAKE_PROFIT_LIMIT stopPrice (below) < Last Traded Price < STOP_LOSS/STOP_LOSS_LIMIT stopPrice (above)

	OCOs add 2 orders to the unfilled order count, EXCHANGE_MAX_ORDERS filter, and the MAX_NUM_ORDERS filter.

Weight:
1
Data Source:
Matching Engine
Full docs: Binance API – orderList/oco POST

BinanceSpotRest.Endpoints.Trading.OrderListOtoPost.WorkingLimitMakerPendingLimitMakerQuery

Order List Oto (post) - Working limit maker pending limit maker query
New Order list - OTO (TRADE)
POST /api/v3/orderList/oto
Place an OTO.
	An OTO (One-Triggers-the-Other) is an order list comprised of 2 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The second order is called the pending order. It can be any order type except for MARKET orders using parameter quoteOrderQty. The pending order is only placed on the order book when the working order gets fully filled.
	If either the working order or the pending order is cancelled individually, the other order in the order list will also be canceled or expired.
	When the order list is placed, if the working order gets immediately fully filled, the placement response will show the working order as FILLED but the pending order will still appear as PENDING_NEW. You need to query the status of the pending order again to see its updated status.
	OTOs add 2 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
2
Parameters:
	Name	Type	Mandatory	Description

symbol	STRING	YES	
listClientOrderId	STRING	NO	Arbitrary unique ID among open order lists. Automatically generated if not sent. A new order list with the same listClientOrderId is accepted only when the previous one is filled or completely expired. listClientOrderId is distinct from the workingClientOrderId and the pendingClientOrderId.
newOrderRespType	ENUM	NO	Format of the JSON response. Supported values: [Order Response Type]
selfTradePreventionMode	ENUM	NO	The allowed values are dependent on what is configured on the symbol. Supported values: [STP Modes]
workingType	ENUM	YES	Supported values: LIMIT,LIMIT_MAKER
workingSide	ENUM	YES	Supported values: [Order Side]
workingClientOrderId	STRING	NO	Arbitrary unique ID among open orders for the working order. Automatically generated if not sent.
workingPrice	DECIMAL	YES	
workingQuantity	DECIMAL	YES	Sets the quantity for the working order.
workingIcebergQty	DECIMAL	NO	This can only be used if workingTimeInForce is GTC, or if workingType is LIMIT_MAKER.
workingTimeInForce	ENUM	NO	Supported values: [Time In Force]
workingStrategyId	LONG	NO	Arbitrary numeric value identifying the working order within an order strategy.
workingStrategyType	INT	NO	Arbitrary numeric value identifying the working order strategy. Values smaller than 1000000 are reserved and cannot be used.
pendingType	ENUM	YES	Supported values: Order Types Note that MARKET orders using quoteOrderQty are not supported.
pendingSide	ENUM	YES	Supported values: [Order Side]
pendingClientOrderId	STRING	NO	Arbitrary unique ID among open orders for the pending order. Automatically generated if not sent.
pendingPrice	DECIMAL	NO	
pendingStopPrice	DECIMAL	NO	
pendingTrailingDelta	DECIMAL	NO	
pendingQuantity	DECIMAL	YES	Sets the quantity for the pending order.
pendingIcebergQty	DECIMAL	NO	This can only be used if pendingTimeInForce is GTC or if pendingType is LIMIT_MAKER.
pendingTimeInForce	ENUM	NO	Supported values: [Time In Force]
pendingStrategyId	LONG	NO	Arbitrary numeric value identifying the pending order within an order strategy.
pendingStrategyType	INT	NO	Arbitrary numeric value identifying the pending order strategy. Values smaller than 1000000 are reserved and cannot be used.
recvWindow	LONG	NO	The value cannot be greater than 60000.
timestamp	LONG	YES	
Mandatory parameters based on pendingType or workingType
Depending on the pendingType or workingType, some optional parameters will become mandatory.
	Type	Additional mandatory parameters	Additional information
	workingType = LIMIT	workingTimeInForce	
	pendingType = LIMIT	pendingPrice, pendingTimeInForce	
	pendingType = STOP_LOSS or TAKE_PROFIT	pendingStopPrice and/or pendingTrailingDelta	
	pendingType = STOP_LOSS_LIMIT or TAKE_PROFIT_LIMIT	pendingPrice, pendingStopPrice and/or pendingTrailingDelta, pendingTimeInForce	

Data Source:
Matching Engine
Full docs: Binance API – orderList/oto POST

BinanceSpotRest.Endpoints.Trading.OrderListOtoPost.WorkingLimitMakerPendingLimitQuery

Order List Oto (post) - Working limit maker pending limit query
New Order list - OTO (TRADE)
POST /api/v3/orderList/oto
Place an OTO.
	An OTO (One-Triggers-the-Other) is an order list comprised of 2 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The second order is called the pending order. It can be any order type except for MARKET orders using parameter quoteOrderQty. The pending order is only placed on the order book when the working order gets fully filled.
	If either the working order or the pending order is cancelled individually, the other order in the order list will also be canceled or expired.
	When the order list is placed, if the working order gets immediately fully filled, the placement response will show the working order as FILLED but the pending order will still appear as PENDING_NEW. You need to query the status of the pending order again to see its updated status.
	OTOs add 2 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
2
Parameters:
	Name	Type	Mandatory	Description

symbol	STRING	YES	
listClientOrderId	STRING	NO	Arbitrary unique ID among open order lists. Automatically generated if not sent. A new order list with the same listClientOrderId is accepted only when the previous one is filled or completely expired. listClientOrderId is distinct from the workingClientOrderId and the pendingClientOrderId.
newOrderRespType	ENUM	NO	Format of the JSON response. Supported values: [Order Response Type]
selfTradePreventionMode	ENUM	NO	The allowed values are dependent on what is configured on the symbol. Supported values: [STP Modes]
workingType	ENUM	YES	Supported values: LIMIT,LIMIT_MAKER
workingSide	ENUM	YES	Supported values: [Order Side]
workingClientOrderId	STRING	NO	Arbitrary unique ID among open orders for the working order. Automatically generated if not sent.
workingPrice	DECIMAL	YES	
workingQuantity	DECIMAL	YES	Sets the quantity for the working order.
workingIcebergQty	DECIMAL	NO	This can only be used if workingTimeInForce is GTC, or if workingType is LIMIT_MAKER.
workingTimeInForce	ENUM	NO	Supported values: [Time In Force]
workingStrategyId	LONG	NO	Arbitrary numeric value identifying the working order within an order strategy.
workingStrategyType	INT	NO	Arbitrary numeric value identifying the working order strategy. Values smaller than 1000000 are reserved and cannot be used.
pendingType	ENUM	YES	Supported values: Order Types Note that MARKET orders using quoteOrderQty are not supported.
pendingSide	ENUM	YES	Supported values: [Order Side]
pendingClientOrderId	STRING	NO	Arbitrary unique ID among open orders for the pending order. Automatically generated if not sent.
pendingPrice	DECIMAL	NO	
pendingStopPrice	DECIMAL	NO	
pendingTrailingDelta	DECIMAL	NO	
pendingQuantity	DECIMAL	YES	Sets the quantity for the pending order.
pendingIcebergQty	DECIMAL	NO	This can only be used if pendingTimeInForce is GTC or if pendingType is LIMIT_MAKER.
pendingTimeInForce	ENUM	NO	Supported values: [Time In Force]
pendingStrategyId	LONG	NO	Arbitrary numeric value identifying the pending order within an order strategy.
pendingStrategyType	INT	NO	Arbitrary numeric value identifying the pending order strategy. Values smaller than 1000000 are reserved and cannot be used.
recvWindow	LONG	NO	The value cannot be greater than 60000.
timestamp	LONG	YES	
Mandatory parameters based on pendingType or workingType
Depending on the pendingType or workingType, some optional parameters will become mandatory.
	Type	Additional mandatory parameters	Additional information
	workingType = LIMIT	workingTimeInForce	
	pendingType = LIMIT	pendingPrice, pendingTimeInForce	
	pendingType = STOP_LOSS or TAKE_PROFIT	pendingStopPrice and/or pendingTrailingDelta	
	pendingType = STOP_LOSS_LIMIT or TAKE_PROFIT_LIMIT	pendingPrice, pendingStopPrice and/or pendingTrailingDelta, pendingTimeInForce	

Data Source:
Matching Engine
Full docs: Binance API – orderList/oto POST

BinanceSpotRest.Endpoints.Trading.OrderListOtoPost.WorkingLimitMakerPendingMarketQuery

Order List Oto (post) - Working limit maker pending market query
New Order list - OTO (TRADE)
POST /api/v3/orderList/oto
Place an OTO.
	An OTO (One-Triggers-the-Other) is an order list comprised of 2 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The second order is called the pending order. It can be any order type except for MARKET orders using parameter quoteOrderQty. The pending order is only placed on the order book when the working order gets fully filled.
	If either the working order or the pending order is cancelled individually, the other order in the order list will also be canceled or expired.
	When the order list is placed, if the working order gets immediately fully filled, the placement response will show the working order as FILLED but the pending order will still appear as PENDING_NEW. You need to query the status of the pending order again to see its updated status.
	OTOs add 2 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
2
Parameters:
	Name	Type	Mandatory	Description

symbol	STRING	YES	
listClientOrderId	STRING	NO	Arbitrary unique ID among open order lists. Automatically generated if not sent. A new order list with the same listClientOrderId is accepted only when the previous one is filled or completely expired. listClientOrderId is distinct from the workingClientOrderId and the pendingClientOrderId.
newOrderRespType	ENUM	NO	Format of the JSON response. Supported values: [Order Response Type]
selfTradePreventionMode	ENUM	NO	The allowed values are dependent on what is configured on the symbol. Supported values: [STP Modes]
workingType	ENUM	YES	Supported values: LIMIT,LIMIT_MAKER
workingSide	ENUM	YES	Supported values: [Order Side]
workingClientOrderId	STRING	NO	Arbitrary unique ID among open orders for the working order. Automatically generated if not sent.
workingPrice	DECIMAL	YES	
workingQuantity	DECIMAL	YES	Sets the quantity for the working order.
workingIcebergQty	DECIMAL	NO	This can only be used if workingTimeInForce is GTC, or if workingType is LIMIT_MAKER.
workingTimeInForce	ENUM	NO	Supported values: [Time In Force]
workingStrategyId	LONG	NO	Arbitrary numeric value identifying the working order within an order strategy.
workingStrategyType	INT	NO	Arbitrary numeric value identifying the working order strategy. Values smaller than 1000000 are reserved and cannot be used.
pendingType	ENUM	YES	Supported values: Order Types Note that MARKET orders using quoteOrderQty are not supported.
pendingSide	ENUM	YES	Supported values: [Order Side]
pendingClientOrderId	STRING	NO	Arbitrary unique ID among open orders for the pending order. Automatically generated if not sent.
pendingPrice	DECIMAL	NO	
pendingStopPrice	DECIMAL	NO	
pendingTrailingDelta	DECIMAL	NO	
pendingQuantity	DECIMAL	YES	Sets the quantity for the pending order.
pendingIcebergQty	DECIMAL	NO	This can only be used if pendingTimeInForce is GTC or if pendingType is LIMIT_MAKER.
pendingTimeInForce	ENUM	NO	Supported values: [Time In Force]
pendingStrategyId	LONG	NO	Arbitrary numeric value identifying the pending order within an order strategy.
pendingStrategyType	INT	NO	Arbitrary numeric value identifying the pending order strategy. Values smaller than 1000000 are reserved and cannot be used.
recvWindow	LONG	NO	The value cannot be greater than 60000.
timestamp	LONG	YES	
Mandatory parameters based on pendingType or workingType
Depending on the pendingType or workingType, some optional parameters will become mandatory.
	Type	Additional mandatory parameters	Additional information
	workingType = LIMIT	workingTimeInForce	
	pendingType = LIMIT	pendingPrice, pendingTimeInForce	
	pendingType = STOP_LOSS or TAKE_PROFIT	pendingStopPrice and/or pendingTrailingDelta	
	pendingType = STOP_LOSS_LIMIT or TAKE_PROFIT_LIMIT	pendingPrice, pendingStopPrice and/or pendingTrailingDelta, pendingTimeInForce	

Data Source:
Matching Engine
Full docs: Binance API – orderList/oto POST

BinanceSpotRest.Endpoints.Trading.OrderListOtoPost.WorkingLimitMakerPendingStopLossLimitQuery

Order List Oto (post) - Working limit maker pending stop loss limit query
New Order list - OTO (TRADE)
POST /api/v3/orderList/oto
Place an OTO.
	An OTO (One-Triggers-the-Other) is an order list comprised of 2 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The second order is called the pending order. It can be any order type except for MARKET orders using parameter quoteOrderQty. The pending order is only placed on the order book when the working order gets fully filled.
	If either the working order or the pending order is cancelled individually, the other order in the order list will also be canceled or expired.
	When the order list is placed, if the working order gets immediately fully filled, the placement response will show the working order as FILLED but the pending order will still appear as PENDING_NEW. You need to query the status of the pending order again to see its updated status.
	OTOs add 2 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
2
Parameters:
	Name	Type	Mandatory	Description

symbol	STRING	YES	
listClientOrderId	STRING	NO	Arbitrary unique ID among open order lists. Automatically generated if not sent. A new order list with the same listClientOrderId is accepted only when the previous one is filled or completely expired. listClientOrderId is distinct from the workingClientOrderId and the pendingClientOrderId.
newOrderRespType	ENUM	NO	Format of the JSON response. Supported values: [Order Response Type]
selfTradePreventionMode	ENUM	NO	The allowed values are dependent on what is configured on the symbol. Supported values: [STP Modes]
workingType	ENUM	YES	Supported values: LIMIT,LIMIT_MAKER
workingSide	ENUM	YES	Supported values: [Order Side]
workingClientOrderId	STRING	NO	Arbitrary unique ID among open orders for the working order. Automatically generated if not sent.
workingPrice	DECIMAL	YES	
workingQuantity	DECIMAL	YES	Sets the quantity for the working order.
workingIcebergQty	DECIMAL	NO	This can only be used if workingTimeInForce is GTC, or if workingType is LIMIT_MAKER.
workingTimeInForce	ENUM	NO	Supported values: [Time In Force]
workingStrategyId	LONG	NO	Arbitrary numeric value identifying the working order within an order strategy.
workingStrategyType	INT	NO	Arbitrary numeric value identifying the working order strategy. Values smaller than 1000000 are reserved and cannot be used.
pendingType	ENUM	YES	Supported values: Order Types Note that MARKET orders using quoteOrderQty are not supported.
pendingSide	ENUM	YES	Supported values: [Order Side]
pendingClientOrderId	STRING	NO	Arbitrary unique ID among open orders for the pending order. Automatically generated if not sent.
pendingPrice	DECIMAL	NO	
pendingStopPrice	DECIMAL	NO	
pendingTrailingDelta	DECIMAL	NO	
pendingQuantity	DECIMAL	YES	Sets the quantity for the pending order.
pendingIcebergQty	DECIMAL	NO	This can only be used if pendingTimeInForce is GTC or if pendingType is LIMIT_MAKER.
pendingTimeInForce	ENUM	NO	Supported values: [Time In Force]
pendingStrategyId	LONG	NO	Arbitrary numeric value identifying the pending order within an order strategy.
pendingStrategyType	INT	NO	Arbitrary numeric value identifying the pending order strategy. Values smaller than 1000000 are reserved and cannot be used.
recvWindow	LONG	NO	The value cannot be greater than 60000.
timestamp	LONG	YES	
Mandatory parameters based on pendingType or workingType
Depending on the pendingType or workingType, some optional parameters will become mandatory.
	Type	Additional mandatory parameters	Additional information
	workingType = LIMIT	workingTimeInForce	
	pendingType = LIMIT	pendingPrice, pendingTimeInForce	
	pendingType = STOP_LOSS or TAKE_PROFIT	pendingStopPrice and/or pendingTrailingDelta	
	pendingType = STOP_LOSS_LIMIT or TAKE_PROFIT_LIMIT	pendingPrice, pendingStopPrice and/or pendingTrailingDelta, pendingTimeInForce	

Data Source:
Matching Engine
Full docs: Binance API – orderList/oto POST

BinanceSpotRest.Endpoints.Trading.OrderListOtoPost.WorkingLimitMakerPendingStopLossQuery

Order List Oto (post) - Working limit maker pending stop loss query
New Order list - OTO (TRADE)
POST /api/v3/orderList/oto
Place an OTO.
	An OTO (One-Triggers-the-Other) is an order list comprised of 2 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The second order is called the pending order. It can be any order type except for MARKET orders using parameter quoteOrderQty. The pending order is only placed on the order book when the working order gets fully filled.
	If either the working order or the pending order is cancelled individually, the other order in the order list will also be canceled or expired.
	When the order list is placed, if the working order gets immediately fully filled, the placement response will show the working order as FILLED but the pending order will still appear as PENDING_NEW. You need to query the status of the pending order again to see its updated status.
	OTOs add 2 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
2
Parameters:
	Name	Type	Mandatory	Description

symbol	STRING	YES	
listClientOrderId	STRING	NO	Arbitrary unique ID among open order lists. Automatically generated if not sent. A new order list with the same listClientOrderId is accepted only when the previous one is filled or completely expired. listClientOrderId is distinct from the workingClientOrderId and the pendingClientOrderId.
newOrderRespType	ENUM	NO	Format of the JSON response. Supported values: [Order Response Type]
selfTradePreventionMode	ENUM	NO	The allowed values are dependent on what is configured on the symbol. Supported values: [STP Modes]
workingType	ENUM	YES	Supported values: LIMIT,LIMIT_MAKER
workingSide	ENUM	YES	Supported values: [Order Side]
workingClientOrderId	STRING	NO	Arbitrary unique ID among open orders for the working order. Automatically generated if not sent.
workingPrice	DECIMAL	YES	
workingQuantity	DECIMAL	YES	Sets the quantity for the working order.
workingIcebergQty	DECIMAL	NO	This can only be used if workingTimeInForce is GTC, or if workingType is LIMIT_MAKER.
workingTimeInForce	ENUM	NO	Supported values: [Time In Force]
workingStrategyId	LONG	NO	Arbitrary numeric value identifying the working order within an order strategy.
workingStrategyType	INT	NO	Arbitrary numeric value identifying the working order strategy. Values smaller than 1000000 are reserved and cannot be used.
pendingType	ENUM	YES	Supported values: Order Types Note that MARKET orders using quoteOrderQty are not supported.
pendingSide	ENUM	YES	Supported values: [Order Side]
pendingClientOrderId	STRING	NO	Arbitrary unique ID among open orders for the pending order. Automatically generated if not sent.
pendingPrice	DECIMAL	NO	
pendingStopPrice	DECIMAL	NO	
pendingTrailingDelta	DECIMAL	NO	
pendingQuantity	DECIMAL	YES	Sets the quantity for the pending order.
pendingIcebergQty	DECIMAL	NO	This can only be used if pendingTimeInForce is GTC or if pendingType is LIMIT_MAKER.
pendingTimeInForce	ENUM	NO	Supported values: [Time In Force]
pendingStrategyId	LONG	NO	Arbitrary numeric value identifying the pending order within an order strategy.
pendingStrategyType	INT	NO	Arbitrary numeric value identifying the pending order strategy. Values smaller than 1000000 are reserved and cannot be used.
recvWindow	LONG	NO	The value cannot be greater than 60000.
timestamp	LONG	YES	
Mandatory parameters based on pendingType or workingType
Depending on the pendingType or workingType, some optional parameters will become mandatory.
	Type	Additional mandatory parameters	Additional information
	workingType = LIMIT	workingTimeInForce	
	pendingType = LIMIT	pendingPrice, pendingTimeInForce	
	pendingType = STOP_LOSS or TAKE_PROFIT	pendingStopPrice and/or pendingTrailingDelta	
	pendingType = STOP_LOSS_LIMIT or TAKE_PROFIT_LIMIT	pendingPrice, pendingStopPrice and/or pendingTrailingDelta, pendingTimeInForce	

Data Source:
Matching Engine
Full docs: Binance API – orderList/oto POST

BinanceSpotRest.Endpoints.Trading.OrderListOtoPost.WorkingLimitMakerPendingTakeProfitLimitQuery

Order List Oto (post) - Working limit maker pending take profit query
New Order list - OTO (TRADE)
POST /api/v3/orderList/oto
Place an OTO.
	An OTO (One-Triggers-the-Other) is an order list comprised of 2 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The second order is called the pending order. It can be any order type except for MARKET orders using parameter quoteOrderQty. The pending order is only placed on the order book when the working order gets fully filled.
	If either the working order or the pending order is cancelled individually, the other order in the order list will also be canceled or expired.
	When the order list is placed, if the working order gets immediately fully filled, the placement response will show the working order as FILLED but the pending order will still appear as PENDING_NEW. You need to query the status of the pending order again to see its updated status.
	OTOs add 2 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
2
Parameters:
	Name	Type	Mandatory	Description

symbol	STRING	YES	
listClientOrderId	STRING	NO	Arbitrary unique ID among open order lists. Automatically generated if not sent. A new order list with the same listClientOrderId is accepted only when the previous one is filled or completely expired. listClientOrderId is distinct from the workingClientOrderId and the pendingClientOrderId.
newOrderRespType	ENUM	NO	Format of the JSON response. Supported values: [Order Response Type]
selfTradePreventionMode	ENUM	NO	The allowed values are dependent on what is configured on the symbol. Supported values: [STP Modes]
workingType	ENUM	YES	Supported values: LIMIT,LIMIT_MAKER
workingSide	ENUM	YES	Supported values: [Order Side]
workingClientOrderId	STRING	NO	Arbitrary unique ID among open orders for the working order. Automatically generated if not sent.
workingPrice	DECIMAL	YES	
workingQuantity	DECIMAL	YES	Sets the quantity for the working order.
workingIcebergQty	DECIMAL	NO	This can only be used if workingTimeInForce is GTC, or if workingType is LIMIT_MAKER.
workingTimeInForce	ENUM	NO	Supported values: [Time In Force]
workingStrategyId	LONG	NO	Arbitrary numeric value identifying the working order within an order strategy.
workingStrategyType	INT	NO	Arbitrary numeric value identifying the working order strategy. Values smaller than 1000000 are reserved and cannot be used.
pendingType	ENUM	YES	Supported values: Order Types Note that MARKET orders using quoteOrderQty are not supported.
pendingSide	ENUM	YES	Supported values: [Order Side]
pendingClientOrderId	STRING	NO	Arbitrary unique ID among open orders for the pending order. Automatically generated if not sent.
pendingPrice	DECIMAL	NO	
pendingStopPrice	DECIMAL	NO	
pendingTrailingDelta	DECIMAL	NO	
pendingQuantity	DECIMAL	YES	Sets the quantity for the pending order.
pendingIcebergQty	DECIMAL	NO	This can only be used if pendingTimeInForce is GTC or if pendingType is LIMIT_MAKER.
pendingTimeInForce	ENUM	NO	Supported values: [Time In Force]
pendingStrategyId	LONG	NO	Arbitrary numeric value identifying the pending order within an order strategy.
pendingStrategyType	INT	NO	Arbitrary numeric value identifying the pending order strategy. Values smaller than 1000000 are reserved and cannot be used.
recvWindow	LONG	NO	The value cannot be greater than 60000.
timestamp	LONG	YES	
Mandatory parameters based on pendingType or workingType
Depending on the pendingType or workingType, some optional parameters will become mandatory.
	Type	Additional mandatory parameters	Additional information
	workingType = LIMIT	workingTimeInForce	
	pendingType = LIMIT	pendingPrice, pendingTimeInForce	
	pendingType = STOP_LOSS or TAKE_PROFIT	pendingStopPrice and/or pendingTrailingDelta	
	pendingType = STOP_LOSS_LIMIT or TAKE_PROFIT_LIMIT	pendingPrice, pendingStopPrice and/or pendingTrailingDelta, pendingTimeInForce	

Data Source:
Matching Engine
Full docs: Binance API – orderList/oto POST

BinanceSpotRest.Endpoints.Trading.OrderListOtoPost.WorkingLimitMakerPendingTakeProfitQuery

Order List Oto (post) - Working limit maker pending take profit query
New Order list - OTO (TRADE)
POST /api/v3/orderList/oto
Place an OTO.
	An OTO (One-Triggers-the-Other) is an order list comprised of 2 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The second order is called the pending order. It can be any order type except for MARKET orders using parameter quoteOrderQty. The pending order is only placed on the order book when the working order gets fully filled.
	If either the working order or the pending order is cancelled individually, the other order in the order list will also be canceled or expired.
	When the order list is placed, if the working order gets immediately fully filled, the placement response will show the working order as FILLED but the pending order will still appear as PENDING_NEW. You need to query the status of the pending order again to see its updated status.
	OTOs add 2 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
2
Parameters:
	Name	Type	Mandatory	Description

symbol	STRING	YES	
listClientOrderId	STRING	NO	Arbitrary unique ID among open order lists. Automatically generated if not sent. A new order list with the same listClientOrderId is accepted only when the previous one is filled or completely expired. listClientOrderId is distinct from the workingClientOrderId and the pendingClientOrderId.
newOrderRespType	ENUM	NO	Format of the JSON response. Supported values: [Order Response Type]
selfTradePreventionMode	ENUM	NO	The allowed values are dependent on what is configured on the symbol. Supported values: [STP Modes]
workingType	ENUM	YES	Supported values: LIMIT,LIMIT_MAKER
workingSide	ENUM	YES	Supported values: [Order Side]
workingClientOrderId	STRING	NO	Arbitrary unique ID among open orders for the working order. Automatically generated if not sent.
workingPrice	DECIMAL	YES	
workingQuantity	DECIMAL	YES	Sets the quantity for the working order.
workingIcebergQty	DECIMAL	NO	This can only be used if workingTimeInForce is GTC, or if workingType is LIMIT_MAKER.
workingTimeInForce	ENUM	NO	Supported values: [Time In Force]
workingStrategyId	LONG	NO	Arbitrary numeric value identifying the working order within an order strategy.
workingStrategyType	INT	NO	Arbitrary numeric value identifying the working order strategy. Values smaller than 1000000 are reserved and cannot be used.
pendingType	ENUM	YES	Supported values: Order Types Note that MARKET orders using quoteOrderQty are not supported.
pendingSide	ENUM	YES	Supported values: [Order Side]
pendingClientOrderId	STRING	NO	Arbitrary unique ID among open orders for the pending order. Automatically generated if not sent.
pendingPrice	DECIMAL	NO	
pendingStopPrice	DECIMAL	NO	
pendingTrailingDelta	DECIMAL	NO	
pendingQuantity	DECIMAL	YES	Sets the quantity for the pending order.
pendingIcebergQty	DECIMAL	NO	This can only be used if pendingTimeInForce is GTC or if pendingType is LIMIT_MAKER.
pendingTimeInForce	ENUM	NO	Supported values: [Time In Force]
pendingStrategyId	LONG	NO	Arbitrary numeric value identifying the pending order within an order strategy.
pendingStrategyType	INT	NO	Arbitrary numeric value identifying the pending order strategy. Values smaller than 1000000 are reserved and cannot be used.
recvWindow	LONG	NO	The value cannot be greater than 60000.
timestamp	LONG	YES	
Mandatory parameters based on pendingType or workingType
Depending on the pendingType or workingType, some optional parameters will become mandatory.
	Type	Additional mandatory parameters	Additional information
	workingType = LIMIT	workingTimeInForce	
	pendingType = LIMIT	pendingPrice, pendingTimeInForce	
	pendingType = STOP_LOSS or TAKE_PROFIT	pendingStopPrice and/or pendingTrailingDelta	
	pendingType = STOP_LOSS_LIMIT or TAKE_PROFIT_LIMIT	pendingPrice, pendingStopPrice and/or pendingTrailingDelta, pendingTimeInForce	

Data Source:
Matching Engine
Full docs: Binance API – orderList/oto POST

BinanceSpotRest.Endpoints.Trading.OrderListOtoPost.WorkingLimitPendingLimitMakerQuery

Order List Oto (post) - Working limit pending limit maker query
New Order list - OTO (TRADE)
POST /api/v3/orderList/oto
Place an OTO.
	An OTO (One-Triggers-the-Other) is an order list comprised of 2 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The second order is called the pending order. It can be any order type except for MARKET orders using parameter quoteOrderQty. The pending order is only placed on the order book when the working order gets fully filled.
	If either the working order or the pending order is cancelled individually, the other order in the order list will also be canceled or expired.
	When the order list is placed, if the working order gets immediately fully filled, the placement response will show the working order as FILLED but the pending order will still appear as PENDING_NEW. You need to query the status of the pending order again to see its updated status.
	OTOs add 2 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
2
Parameters:
	Name	Type	Mandatory	Description

symbol	STRING	YES	
listClientOrderId	STRING	NO	Arbitrary unique ID among open order lists. Automatically generated if not sent. A new order list with the same listClientOrderId is accepted only when the previous one is filled or completely expired. listClientOrderId is distinct from the workingClientOrderId and the pendingClientOrderId.
newOrderRespType	ENUM	NO	Format of the JSON response. Supported values: [Order Response Type]
selfTradePreventionMode	ENUM	NO	The allowed values are dependent on what is configured on the symbol. Supported values: [STP Modes]
workingType	ENUM	YES	Supported values: LIMIT,LIMIT_MAKER
workingSide	ENUM	YES	Supported values: [Order Side]
workingClientOrderId	STRING	NO	Arbitrary unique ID among open orders for the working order. Automatically generated if not sent.
workingPrice	DECIMAL	YES	
workingQuantity	DECIMAL	YES	Sets the quantity for the working order.
workingIcebergQty	DECIMAL	NO	This can only be used if workingTimeInForce is GTC, or if workingType is LIMIT_MAKER.
workingTimeInForce	ENUM	NO	Supported values: [Time In Force]
workingStrategyId	LONG	NO	Arbitrary numeric value identifying the working order within an order strategy.
workingStrategyType	INT	NO	Arbitrary numeric value identifying the working order strategy. Values smaller than 1000000 are reserved and cannot be used.
pendingType	ENUM	YES	Supported values: Order Types Note that MARKET orders using quoteOrderQty are not supported.
pendingSide	ENUM	YES	Supported values: [Order Side]
pendingClientOrderId	STRING	NO	Arbitrary unique ID among open orders for the pending order. Automatically generated if not sent.
pendingPrice	DECIMAL	NO	
pendingStopPrice	DECIMAL	NO	
pendingTrailingDelta	DECIMAL	NO	
pendingQuantity	DECIMAL	YES	Sets the quantity for the pending order.
pendingIcebergQty	DECIMAL	NO	This can only be used if pendingTimeInForce is GTC or if pendingType is LIMIT_MAKER.
pendingTimeInForce	ENUM	NO	Supported values: [Time In Force]
pendingStrategyId	LONG	NO	Arbitrary numeric value identifying the pending order within an order strategy.
pendingStrategyType	INT	NO	Arbitrary numeric value identifying the pending order strategy. Values smaller than 1000000 are reserved and cannot be used.
recvWindow	LONG	NO	The value cannot be greater than 60000.
timestamp	LONG	YES	
Mandatory parameters based on pendingType or workingType
Depending on the pendingType or workingType, some optional parameters will become mandatory.
	Type	Additional mandatory parameters	Additional information
	workingType = LIMIT	workingTimeInForce	
	pendingType = LIMIT	pendingPrice, pendingTimeInForce	
	pendingType = STOP_LOSS or TAKE_PROFIT	pendingStopPrice and/or pendingTrailingDelta	
	pendingType = STOP_LOSS_LIMIT or TAKE_PROFIT_LIMIT	pendingPrice, pendingStopPrice and/or pendingTrailingDelta, pendingTimeInForce	

Data Source:
Matching Engine
Full docs: Binance API – orderList/oto POST

BinanceSpotRest.Endpoints.Trading.OrderListOtoPost.WorkingLimitPendingLimitQuery

Order List Oto (post) - Working limit pending limit query
New Order list - OTO (TRADE)
POST /api/v3/orderList/oto
Place an OTO.
	An OTO (One-Triggers-the-Other) is an order list comprised of 2 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The second order is called the pending order. It can be any order type except for MARKET orders using parameter quoteOrderQty. The pending order is only placed on the order book when the working order gets fully filled.
	If either the working order or the pending order is cancelled individually, the other order in the order list will also be canceled or expired.
	When the order list is placed, if the working order gets immediately fully filled, the placement response will show the working order as FILLED but the pending order will still appear as PENDING_NEW. You need to query the status of the pending order again to see its updated status.
	OTOs add 2 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
2
Parameters:
	Name	Type	Mandatory	Description

symbol	STRING	YES	
listClientOrderId	STRING	NO	Arbitrary unique ID among open order lists. Automatically generated if not sent. A new order list with the same listClientOrderId is accepted only when the previous one is filled or completely expired. listClientOrderId is distinct from the workingClientOrderId and the pendingClientOrderId.
newOrderRespType	ENUM	NO	Format of the JSON response. Supported values: [Order Response Type]
selfTradePreventionMode	ENUM	NO	The allowed values are dependent on what is configured on the symbol. Supported values: [STP Modes]
workingType	ENUM	YES	Supported values: LIMIT,LIMIT_MAKER
workingSide	ENUM	YES	Supported values: [Order Side]
workingClientOrderId	STRING	NO	Arbitrary unique ID among open orders for the working order. Automatically generated if not sent.
workingPrice	DECIMAL	YES	
workingQuantity	DECIMAL	YES	Sets the quantity for the working order.
workingIcebergQty	DECIMAL	NO	This can only be used if workingTimeInForce is GTC, or if workingType is LIMIT_MAKER.
workingTimeInForce	ENUM	NO	Supported values: [Time In Force]
workingStrategyId	LONG	NO	Arbitrary numeric value identifying the working order within an order strategy.
workingStrategyType	INT	NO	Arbitrary numeric value identifying the working order strategy. Values smaller than 1000000 are reserved and cannot be used.
pendingType	ENUM	YES	Supported values: Order Types Note that MARKET orders using quoteOrderQty are not supported.
pendingSide	ENUM	YES	Supported values: [Order Side]
pendingClientOrderId	STRING	NO	Arbitrary unique ID among open orders for the pending order. Automatically generated if not sent.
pendingPrice	DECIMAL	NO	
pendingStopPrice	DECIMAL	NO	
pendingTrailingDelta	DECIMAL	NO	
pendingQuantity	DECIMAL	YES	Sets the quantity for the pending order.
pendingIcebergQty	DECIMAL	NO	This can only be used if pendingTimeInForce is GTC or if pendingType is LIMIT_MAKER.
pendingTimeInForce	ENUM	NO	Supported values: [Time In Force]
pendingStrategyId	LONG	NO	Arbitrary numeric value identifying the pending order within an order strategy.
pendingStrategyType	INT	NO	Arbitrary numeric value identifying the pending order strategy. Values smaller than 1000000 are reserved and cannot be used.
recvWindow	LONG	NO	The value cannot be greater than 60000.
timestamp	LONG	YES	
Mandatory parameters based on pendingType or workingType
Depending on the pendingType or workingType, some optional parameters will become mandatory.
	Type	Additional mandatory parameters	Additional information
	workingType = LIMIT	workingTimeInForce	
	pendingType = LIMIT	pendingPrice, pendingTimeInForce	
	pendingType = STOP_LOSS or TAKE_PROFIT	pendingStopPrice and/or pendingTrailingDelta	
	pendingType = STOP_LOSS_LIMIT or TAKE_PROFIT_LIMIT	pendingPrice, pendingStopPrice and/or pendingTrailingDelta, pendingTimeInForce	

Data Source:
Matching Engine
Full docs: Binance API – orderList/oto POST

BinanceSpotRest.Endpoints.Trading.OrderListOtoPost.WorkingLimitPendingMarketQuery

Order List Oto (post) - Working limit pending market query
New Order list - OTO (TRADE)
POST /api/v3/orderList/oto
Place an OTO.
	An OTO (One-Triggers-the-Other) is an order list comprised of 2 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The second order is called the pending order. It can be any order type except for MARKET orders using parameter quoteOrderQty. The pending order is only placed on the order book when the working order gets fully filled.
	If either the working order or the pending order is cancelled individually, the other order in the order list will also be canceled or expired.
	When the order list is placed, if the working order gets immediately fully filled, the placement response will show the working order as FILLED but the pending order will still appear as PENDING_NEW. You need to query the status of the pending order again to see its updated status.
	OTOs add 2 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
2
Parameters:
	Name	Type	Mandatory	Description

symbol	STRING	YES	
listClientOrderId	STRING	NO	Arbitrary unique ID among open order lists. Automatically generated if not sent. A new order list with the same listClientOrderId is accepted only when the previous one is filled or completely expired. listClientOrderId is distinct from the workingClientOrderId and the pendingClientOrderId.
newOrderRespType	ENUM	NO	Format of the JSON response. Supported values: [Order Response Type]
selfTradePreventionMode	ENUM	NO	The allowed values are dependent on what is configured on the symbol. Supported values: [STP Modes]
workingType	ENUM	YES	Supported values: LIMIT,LIMIT_MAKER
workingSide	ENUM	YES	Supported values: [Order Side]
workingClientOrderId	STRING	NO	Arbitrary unique ID among open orders for the working order. Automatically generated if not sent.
workingPrice	DECIMAL	YES	
workingQuantity	DECIMAL	YES	Sets the quantity for the working order.
workingIcebergQty	DECIMAL	NO	This can only be used if workingTimeInForce is GTC, or if workingType is LIMIT_MAKER.
workingTimeInForce	ENUM	NO	Supported values: [Time In Force]
workingStrategyId	LONG	NO	Arbitrary numeric value identifying the working order within an order strategy.
workingStrategyType	INT	NO	Arbitrary numeric value identifying the working order strategy. Values smaller than 1000000 are reserved and cannot be used.
pendingType	ENUM	YES	Supported values: Order Types Note that MARKET orders using quoteOrderQty are not supported.
pendingSide	ENUM	YES	Supported values: [Order Side]
pendingClientOrderId	STRING	NO	Arbitrary unique ID among open orders for the pending order. Automatically generated if not sent.
pendingPrice	DECIMAL	NO	
pendingStopPrice	DECIMAL	NO	
pendingTrailingDelta	DECIMAL	NO	
pendingQuantity	DECIMAL	YES	Sets the quantity for the pending order.
pendingIcebergQty	DECIMAL	NO	This can only be used if pendingTimeInForce is GTC or if pendingType is LIMIT_MAKER.
pendingTimeInForce	ENUM	NO	Supported values: [Time In Force]
pendingStrategyId	LONG	NO	Arbitrary numeric value identifying the pending order within an order strategy.
pendingStrategyType	INT	NO	Arbitrary numeric value identifying the pending order strategy. Values smaller than 1000000 are reserved and cannot be used.
recvWindow	LONG	NO	The value cannot be greater than 60000.
timestamp	LONG	YES	
Mandatory parameters based on pendingType or workingType
Depending on the pendingType or workingType, some optional parameters will become mandatory.
	Type	Additional mandatory parameters	Additional information
	workingType = LIMIT	workingTimeInForce	
	pendingType = LIMIT	pendingPrice, pendingTimeInForce	
	pendingType = STOP_LOSS or TAKE_PROFIT	pendingStopPrice and/or pendingTrailingDelta	
	pendingType = STOP_LOSS_LIMIT or TAKE_PROFIT_LIMIT	pendingPrice, pendingStopPrice and/or pendingTrailingDelta, pendingTimeInForce	

Data Source:
Matching Engine
Full docs: Binance API – orderList/oto POST

BinanceSpotRest.Endpoints.Trading.OrderListOtoPost.WorkingLimitPendingStopLossLimitQuery

Order List Oto (post) - Working limit pending stop loss limit query
New Order list - OTO (TRADE)
POST /api/v3/orderList/oto
Place an OTO.
	An OTO (One-Triggers-the-Other) is an order list comprised of 2 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The second order is called the pending order. It can be any order type except for MARKET orders using parameter quoteOrderQty. The pending order is only placed on the order book when the working order gets fully filled.
	If either the working order or the pending order is cancelled individually, the other order in the order list will also be canceled or expired.
	When the order list is placed, if the working order gets immediately fully filled, the placement response will show the working order as FILLED but the pending order will still appear as PENDING_NEW. You need to query the status of the pending order again to see its updated status.
	OTOs add 2 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
2
Parameters:
	Name	Type	Mandatory	Description

symbol	STRING	YES	
listClientOrderId	STRING	NO	Arbitrary unique ID among open order lists. Automatically generated if not sent. A new order list with the same listClientOrderId is accepted only when the previous one is filled or completely expired. listClientOrderId is distinct from the workingClientOrderId and the pendingClientOrderId.
newOrderRespType	ENUM	NO	Format of the JSON response. Supported values: [Order Response Type]
selfTradePreventionMode	ENUM	NO	The allowed values are dependent on what is configured on the symbol. Supported values: [STP Modes]
workingType	ENUM	YES	Supported values: LIMIT,LIMIT_MAKER
workingSide	ENUM	YES	Supported values: [Order Side]
workingClientOrderId	STRING	NO	Arbitrary unique ID among open orders for the working order. Automatically generated if not sent.
workingPrice	DECIMAL	YES	
workingQuantity	DECIMAL	YES	Sets the quantity for the working order.
workingIcebergQty	DECIMAL	NO	This can only be used if workingTimeInForce is GTC, or if workingType is LIMIT_MAKER.
workingTimeInForce	ENUM	NO	Supported values: [Time In Force]
workingStrategyId	LONG	NO	Arbitrary numeric value identifying the working order within an order strategy.
workingStrategyType	INT	NO	Arbitrary numeric value identifying the working order strategy. Values smaller than 1000000 are reserved and cannot be used.
pendingType	ENUM	YES	Supported values: Order Types Note that MARKET orders using quoteOrderQty are not supported.
pendingSide	ENUM	YES	Supported values: [Order Side]
pendingClientOrderId	STRING	NO	Arbitrary unique ID among open orders for the pending order. Automatically generated if not sent.
pendingPrice	DECIMAL	NO	
pendingStopPrice	DECIMAL	NO	
pendingTrailingDelta	DECIMAL	NO	
pendingQuantity	DECIMAL	YES	Sets the quantity for the pending order.
pendingIcebergQty	DECIMAL	NO	This can only be used if pendingTimeInForce is GTC or if pendingType is LIMIT_MAKER.
pendingTimeInForce	ENUM	NO	Supported values: [Time In Force]
pendingStrategyId	LONG	NO	Arbitrary numeric value identifying the pending order within an order strategy.
pendingStrategyType	INT	NO	Arbitrary numeric value identifying the pending order strategy. Values smaller than 1000000 are reserved and cannot be used.
recvWindow	LONG	NO	The value cannot be greater than 60000.
timestamp	LONG	YES	
Mandatory parameters based on pendingType or workingType
Depending on the pendingType or workingType, some optional parameters will become mandatory.
	Type	Additional mandatory parameters	Additional information
	workingType = LIMIT	workingTimeInForce	
	pendingType = LIMIT	pendingPrice, pendingTimeInForce	
	pendingType = STOP_LOSS or TAKE_PROFIT	pendingStopPrice and/or pendingTrailingDelta	
	pendingType = STOP_LOSS_LIMIT or TAKE_PROFIT_LIMIT	pendingPrice, pendingStopPrice and/or pendingTrailingDelta, pendingTimeInForce	

Data Source:
Matching Engine
Full docs: Binance API – orderList/oto POST

BinanceSpotRest.Endpoints.Trading.OrderListOtoPost.WorkingLimitPendingStopLossQuery

Order List Oto (post) - Working limit pending stop loss query
New Order list - OTO (TRADE)
POST /api/v3/orderList/oto
Place an OTO.
	An OTO (One-Triggers-the-Other) is an order list comprised of 2 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The second order is called the pending order. It can be any order type except for MARKET orders using parameter quoteOrderQty. The pending order is only placed on the order book when the working order gets fully filled.
	If either the working order or the pending order is cancelled individually, the other order in the order list will also be canceled or expired.
	When the order list is placed, if the working order gets immediately fully filled, the placement response will show the working order as FILLED but the pending order will still appear as PENDING_NEW. You need to query the status of the pending order again to see its updated status.
	OTOs add 2 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
2
Parameters:
	Name	Type	Mandatory	Description

symbol	STRING	YES	
listClientOrderId	STRING	NO	Arbitrary unique ID among open order lists. Automatically generated if not sent. A new order list with the same listClientOrderId is accepted only when the previous one is filled or completely expired. listClientOrderId is distinct from the workingClientOrderId and the pendingClientOrderId.
newOrderRespType	ENUM	NO	Format of the JSON response. Supported values: [Order Response Type]
selfTradePreventionMode	ENUM	NO	The allowed values are dependent on what is configured on the symbol. Supported values: [STP Modes]
workingType	ENUM	YES	Supported values: LIMIT,LIMIT_MAKER
workingSide	ENUM	YES	Supported values: [Order Side]
workingClientOrderId	STRING	NO	Arbitrary unique ID among open orders for the working order. Automatically generated if not sent.
workingPrice	DECIMAL	YES	
workingQuantity	DECIMAL	YES	Sets the quantity for the working order.
workingIcebergQty	DECIMAL	NO	This can only be used if workingTimeInForce is GTC, or if workingType is LIMIT_MAKER.
workingTimeInForce	ENUM	NO	Supported values: [Time In Force]
workingStrategyId	LONG	NO	Arbitrary numeric value identifying the working order within an order strategy.
workingStrategyType	INT	NO	Arbitrary numeric value identifying the working order strategy. Values smaller than 1000000 are reserved and cannot be used.
pendingType	ENUM	YES	Supported values: Order Types Note that MARKET orders using quoteOrderQty are not supported.
pendingSide	ENUM	YES	Supported values: [Order Side]
pendingClientOrderId	STRING	NO	Arbitrary unique ID among open orders for the pending order. Automatically generated if not sent.
pendingPrice	DECIMAL	NO	
pendingStopPrice	DECIMAL	NO	
pendingTrailingDelta	DECIMAL	NO	
pendingQuantity	DECIMAL	YES	Sets the quantity for the pending order.
pendingIcebergQty	DECIMAL	NO	This can only be used if pendingTimeInForce is GTC or if pendingType is LIMIT_MAKER.
pendingTimeInForce	ENUM	NO	Supported values: [Time In Force]
pendingStrategyId	LONG	NO	Arbitrary numeric value identifying the pending order within an order strategy.
pendingStrategyType	INT	NO	Arbitrary numeric value identifying the pending order strategy. Values smaller than 1000000 are reserved and cannot be used.
recvWindow	LONG	NO	The value cannot be greater than 60000.
timestamp	LONG	YES	
Mandatory parameters based on pendingType or workingType
Depending on the pendingType or workingType, some optional parameters will become mandatory.
	Type	Additional mandatory parameters	Additional information
	workingType = LIMIT	workingTimeInForce	
	pendingType = LIMIT	pendingPrice, pendingTimeInForce	
	pendingType = STOP_LOSS or TAKE_PROFIT	pendingStopPrice and/or pendingTrailingDelta	
	pendingType = STOP_LOSS_LIMIT or TAKE_PROFIT_LIMIT	pendingPrice, pendingStopPrice and/or pendingTrailingDelta, pendingTimeInForce	

Data Source:
Matching Engine
Full docs: Binance API – orderList/oto POST

BinanceSpotRest.Endpoints.Trading.OrderListOtoPost.WorkingLimitPendingTakeProfitLimitQuery

Order List Oto (post) - Working limit pending take profit limit query
New Order list - OTO (TRADE)
POST /api/v3/orderList/oto
Place an OTO.
	An OTO (One-Triggers-the-Other) is an order list comprised of 2 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The second order is called the pending order. It can be any order type except for MARKET orders using parameter quoteOrderQty. The pending order is only placed on the order book when the working order gets fully filled.
	If either the working order or the pending order is cancelled individually, the other order in the order list will also be canceled or expired.
	When the order list is placed, if the working order gets immediately fully filled, the placement response will show the working order as FILLED but the pending order will still appear as PENDING_NEW. You need to query the status of the pending order again to see its updated status.
	OTOs add 2 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
2
Parameters:
	Name	Type	Mandatory	Description

symbol	STRING	YES	
listClientOrderId	STRING	NO	Arbitrary unique ID among open order lists. Automatically generated if not sent. A new order list with the same listClientOrderId is accepted only when the previous one is filled or completely expired. listClientOrderId is distinct from the workingClientOrderId and the pendingClientOrderId.
newOrderRespType	ENUM	NO	Format of the JSON response. Supported values: [Order Response Type]
selfTradePreventionMode	ENUM	NO	The allowed values are dependent on what is configured on the symbol. Supported values: [STP Modes]
workingType	ENUM	YES	Supported values: LIMIT,LIMIT_MAKER
workingSide	ENUM	YES	Supported values: [Order Side]
workingClientOrderId	STRING	NO	Arbitrary unique ID among open orders for the working order. Automatically generated if not sent.
workingPrice	DECIMAL	YES	
workingQuantity	DECIMAL	YES	Sets the quantity for the working order.
workingIcebergQty	DECIMAL	NO	This can only be used if workingTimeInForce is GTC, or if workingType is LIMIT_MAKER.
workingTimeInForce	ENUM	NO	Supported values: [Time In Force]
workingStrategyId	LONG	NO	Arbitrary numeric value identifying the working order within an order strategy.
workingStrategyType	INT	NO	Arbitrary numeric value identifying the working order strategy. Values smaller than 1000000 are reserved and cannot be used.
pendingType	ENUM	YES	Supported values: Order Types Note that MARKET orders using quoteOrderQty are not supported.
pendingSide	ENUM	YES	Supported values: [Order Side]
pendingClientOrderId	STRING	NO	Arbitrary unique ID among open orders for the pending order. Automatically generated if not sent.
pendingPrice	DECIMAL	NO	
pendingStopPrice	DECIMAL	NO	
pendingTrailingDelta	DECIMAL	NO	
pendingQuantity	DECIMAL	YES	Sets the quantity for the pending order.
pendingIcebergQty	DECIMAL	NO	This can only be used if pendingTimeInForce is GTC or if pendingType is LIMIT_MAKER.
pendingTimeInForce	ENUM	NO	Supported values: [Time In Force]
pendingStrategyId	LONG	NO	Arbitrary numeric value identifying the pending order within an order strategy.
pendingStrategyType	INT	NO	Arbitrary numeric value identifying the pending order strategy. Values smaller than 1000000 are reserved and cannot be used.
recvWindow	LONG	NO	The value cannot be greater than 60000.
timestamp	LONG	YES	
Mandatory parameters based on pendingType or workingType
Depending on the pendingType or workingType, some optional parameters will become mandatory.
	Type	Additional mandatory parameters	Additional information
	workingType = LIMIT	workingTimeInForce	
	pendingType = LIMIT	pendingPrice, pendingTimeInForce	
	pendingType = STOP_LOSS or TAKE_PROFIT	pendingStopPrice and/or pendingTrailingDelta	
	pendingType = STOP_LOSS_LIMIT or TAKE_PROFIT_LIMIT	pendingPrice, pendingStopPrice and/or pendingTrailingDelta, pendingTimeInForce	

Data Source:
Matching Engine
Full docs: Binance API – orderList/oto POST

BinanceSpotRest.Endpoints.Trading.OrderListOtoPost.WorkingLimitPendingTakeProfitQuery

Order List Oto (post) - Working limit pending take profit
New Order list - OTO (TRADE)
POST /api/v3/orderList/oto
Place an OTO.
	An OTO (One-Triggers-the-Other) is an order list comprised of 2 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The second order is called the pending order. It can be any order type except for MARKET orders using parameter quoteOrderQty. The pending order is only placed on the order book when the working order gets fully filled.
	If either the working order or the pending order is cancelled individually, the other order in the order list will also be canceled or expired.
	When the order list is placed, if the working order gets immediately fully filled, the placement response will show the working order as FILLED but the pending order will still appear as PENDING_NEW. You need to query the status of the pending order again to see its updated status.
	OTOs add 2 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
2
Parameters:
	Name	Type	Mandatory	Description

symbol	STRING	YES	
listClientOrderId	STRING	NO	Arbitrary unique ID among open order lists. Automatically generated if not sent. A new order list with the same listClientOrderId is accepted only when the previous one is filled or completely expired. listClientOrderId is distinct from the workingClientOrderId and the pendingClientOrderId.
newOrderRespType	ENUM	NO	Format of the JSON response. Supported values: [Order Response Type]
selfTradePreventionMode	ENUM	NO	The allowed values are dependent on what is configured on the symbol. Supported values: [STP Modes]
workingType	ENUM	YES	Supported values: LIMIT,LIMIT_MAKER
workingSide	ENUM	YES	Supported values: [Order Side]
workingClientOrderId	STRING	NO	Arbitrary unique ID among open orders for the working order. Automatically generated if not sent.
workingPrice	DECIMAL	YES	
workingQuantity	DECIMAL	YES	Sets the quantity for the working order.
workingIcebergQty	DECIMAL	NO	This can only be used if workingTimeInForce is GTC, or if workingType is LIMIT_MAKER.
workingTimeInForce	ENUM	NO	Supported values: [Time In Force]
workingStrategyId	LONG	NO	Arbitrary numeric value identifying the working order within an order strategy.
workingStrategyType	INT	NO	Arbitrary numeric value identifying the working order strategy. Values smaller than 1000000 are reserved and cannot be used.
pendingType	ENUM	YES	Supported values: Order Types Note that MARKET orders using quoteOrderQty are not supported.
pendingSide	ENUM	YES	Supported values: [Order Side]
pendingClientOrderId	STRING	NO	Arbitrary unique ID among open orders for the pending order. Automatically generated if not sent.
pendingPrice	DECIMAL	NO	
pendingStopPrice	DECIMAL	NO	
pendingTrailingDelta	DECIMAL	NO	
pendingQuantity	DECIMAL	YES	Sets the quantity for the pending order.
pendingIcebergQty	DECIMAL	NO	This can only be used if pendingTimeInForce is GTC or if pendingType is LIMIT_MAKER.
pendingTimeInForce	ENUM	NO	Supported values: [Time In Force]
pendingStrategyId	LONG	NO	Arbitrary numeric value identifying the pending order within an order strategy.
pendingStrategyType	INT	NO	Arbitrary numeric value identifying the pending order strategy. Values smaller than 1000000 are reserved and cannot be used.
recvWindow	LONG	NO	The value cannot be greater than 60000.
timestamp	LONG	YES	
Mandatory parameters based on pendingType or workingType
Depending on the pendingType or workingType, some optional parameters will become mandatory.
	Type	Additional mandatory parameters	Additional information
	workingType = LIMIT	workingTimeInForce	
	pendingType = LIMIT	pendingPrice, pendingTimeInForce	
	pendingType = STOP_LOSS or TAKE_PROFIT	pendingStopPrice and/or pendingTrailingDelta	
	pendingType = STOP_LOSS_LIMIT or TAKE_PROFIT_LIMIT	pendingPrice, pendingStopPrice and/or pendingTrailingDelta, pendingTimeInForce	

Data Source:
Matching Engine
Full docs: Binance API – orderList/oto POST

BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitMakerPendingAboveLimitMakerBelowStopLossLimitQuery

Order List Otoco (post) - Working limit maker pending above limit maker below stop loss limit query
New Order list - OTOCO (TRADE)
POST /api/v3/orderList/otoco
Place an OTOCO.
	An OTOCO (One-Triggers-One-Cancels-the-Other) is an order list comprised of 3 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The behavior of the working order is the same as the OTO.
	OTOCO has 2 pending orders (pending above and pending below), forming an OCO pair. The pending orders are only placed on the order book when the working order gets fully filled.
	The rules of the pending above and pending below follow the same rules as the Order list OCO.
	OTOCOs add 3 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
3
Data Source:
Matching Engine
Full docs: Binance API – orderList/otoco POST

BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitMakerPendingAboveLimitMakerBelowStopLossQuery

Order List Otoco (post) - Working limit maker pending above limit maker below stop loss query
New Order list - OTOCO (TRADE)
POST /api/v3/orderList/otoco
Place an OTOCO.
	An OTOCO (One-Triggers-One-Cancels-the-Other) is an order list comprised of 3 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The behavior of the working order is the same as the OTO.
	OTOCO has 2 pending orders (pending above and pending below), forming an OCO pair. The pending orders are only placed on the order book when the working order gets fully filled.
	The rules of the pending above and pending below follow the same rules as the Order list OCO.
	OTOCOs add 3 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
3
Data Source:
Matching Engine
Full docs: Binance API – orderList/otoco POST

BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitMakerPendingAboveStopLossBelowLimitMakerQuery

Order List Otoco (post) - Working limit maker pending above stop loss below limit maker query
New Order list - OTOCO (TRADE)
POST /api/v3/orderList/otoco
Place an OTOCO.
	An OTOCO (One-Triggers-One-Cancels-the-Other) is an order list comprised of 3 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The behavior of the working order is the same as the OTO.
	OTOCO has 2 pending orders (pending above and pending below), forming an OCO pair. The pending orders are only placed on the order book when the working order gets fully filled.
	The rules of the pending above and pending below follow the same rules as the Order list OCO.
	OTOCOs add 3 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
3
Data Source:
Matching Engine
Full docs: Binance API – orderList/otoco POST

BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitMakerPendingAboveStopLossBelowTakeProfitLimitQuery

Order List Otoco (post) - Working limit maker pending above stop loss below take profit limit query
New Order list - OTOCO (TRADE)
POST /api/v3/orderList/otoco
Place an OTOCO.
	An OTOCO (One-Triggers-One-Cancels-the-Other) is an order list comprised of 3 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The behavior of the working order is the same as the OTO.
	OTOCO has 2 pending orders (pending above and pending below), forming an OCO pair. The pending orders are only placed on the order book when the working order gets fully filled.
	The rules of the pending above and pending below follow the same rules as the Order list OCO.
	OTOCOs add 3 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
3
Data Source:
Matching Engine
Full docs: Binance API – orderList/otoco POST

BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitMakerPendingAboveStopLossBelowTakeProfitQuery

Order List Otoco (post) - Working limit maker pending above stop loss below take profit query
New Order list - OTOCO (TRADE)
POST /api/v3/orderList/otoco
Place an OTOCO.
	An OTOCO (One-Triggers-One-Cancels-the-Other) is an order list comprised of 3 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The behavior of the working order is the same as the OTO.
	OTOCO has 2 pending orders (pending above and pending below), forming an OCO pair. The pending orders are only placed on the order book when the working order gets fully filled.
	The rules of the pending above and pending below follow the same rules as the Order list OCO.
	OTOCOs add 3 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
3
Data Source:
Matching Engine
Full docs: Binance API – orderList/otoco POST

BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitMakerPendingAboveStopLossLimitBelowLimitMakerQuery

Order List Otoco (post) - Working limit maker pending above stop loss limit below limit maker query
New Order list - OTOCO (TRADE)
POST /api/v3/orderList/otoco
Place an OTOCO.
	An OTOCO (One-Triggers-One-Cancels-the-Other) is an order list comprised of 3 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The behavior of the working order is the same as the OTO.
	OTOCO has 2 pending orders (pending above and pending below), forming an OCO pair. The pending orders are only placed on the order book when the working order gets fully filled.
	The rules of the pending above and pending below follow the same rules as the Order list OCO.
	OTOCOs add 3 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
3
Data Source:
Matching Engine
Full docs: Binance API – orderList/otoco POST

BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitMakerPendingAboveStopLossLimitBelowTakeProfitLimitQuery

Order List Otoco (post) - Working limit maker pending above stop loss limit below take profit limit query
New Order list - OTOCO (TRADE)
POST /api/v3/orderList/otoco
Place an OTOCO.
	An OTOCO (One-Triggers-One-Cancels-the-Other) is an order list comprised of 3 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The behavior of the working order is the same as the OTO.
	OTOCO has 2 pending orders (pending above and pending below), forming an OCO pair. The pending orders are only placed on the order book when the working order gets fully filled.
	The rules of the pending above and pending below follow the same rules as the Order list OCO.
	OTOCOs add 3 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
3
Data Source:
Matching Engine
Full docs: Binance API – orderList/otoco POST

BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitMakerPendingAboveStopLossLimitBelowTakeProfitQuery

Order List Otoco (post) - Working limit maker pending above stop loss limit below take profit query
New Order list - OTOCO (TRADE)
POST /api/v3/orderList/otoco
Place an OTOCO.
	An OTOCO (One-Triggers-One-Cancels-the-Other) is an order list comprised of 3 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The behavior of the working order is the same as the OTO.
	OTOCO has 2 pending orders (pending above and pending below), forming an OCO pair. The pending orders are only placed on the order book when the working order gets fully filled.
	The rules of the pending above and pending below follow the same rules as the Order list OCO.
	OTOCOs add 3 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
3
Data Source:
Matching Engine
Full docs: Binance API – orderList/otoco POST

BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitMakerPendingAboveTakeProfitBelowStopLossLimitQuery

Order List Otoco (post) - Working limit maker pending above take profit below stop loss limit query
New Order list - OTOCO (TRADE)
POST /api/v3/orderList/otoco
Place an OTOCO.
	An OTOCO (One-Triggers-One-Cancels-the-Other) is an order list comprised of 3 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The behavior of the working order is the same as the OTO.
	OTOCO has 2 pending orders (pending above and pending below), forming an OCO pair. The pending orders are only placed on the order book when the working order gets fully filled.
	The rules of the pending above and pending below follow the same rules as the Order list OCO.
	OTOCOs add 3 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
3
Data Source:
Matching Engine
Full docs: Binance API – orderList/otoco POST

BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitMakerPendingAboveTakeProfitBelowStopLossQuery

Order List Otoco (post) - Working limit maker pending above take profit below stop loss query
New Order list - OTOCO (TRADE)
POST /api/v3/orderList/otoco
Place an OTOCO.
	An OTOCO (One-Triggers-One-Cancels-the-Other) is an order list comprised of 3 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The behavior of the working order is the same as the OTO.
	OTOCO has 2 pending orders (pending above and pending below), forming an OCO pair. The pending orders are only placed on the order book when the working order gets fully filled.
	The rules of the pending above and pending below follow the same rules as the Order list OCO.
	OTOCOs add 3 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
3
Data Source:
Matching Engine
Full docs: Binance API – orderList/otoco POST

BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitMakerPendingAboveTakeProfitLimitBelowStopLossLimitQuery

Order List Otoco (post) - Working limit maker pending above take profit limit below stop loss limit query
New Order list - OTOCO (TRADE)
POST /api/v3/orderList/otoco
Place an OTOCO.
	An OTOCO (One-Triggers-One-Cancels-the-Other) is an order list comprised of 3 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The behavior of the working order is the same as the OTO.
	OTOCO has 2 pending orders (pending above and pending below), forming an OCO pair. The pending orders are only placed on the order book when the working order gets fully filled.
	The rules of the pending above and pending below follow the same rules as the Order list OCO.
	OTOCOs add 3 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
3
Data Source:
Matching Engine
Full docs: Binance API – orderList/otoco POST

BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitMakerPendingAboveTakeProfitLimitBelowStopLossQuery

Order List Otoco (post) - Working limit maker pending above take profit limit below stop loss query
New Order list - OTOCO (TRADE)
POST /api/v3/orderList/otoco
Place an OTOCO.
	An OTOCO (One-Triggers-One-Cancels-the-Other) is an order list comprised of 3 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The behavior of the working order is the same as the OTO.
	OTOCO has 2 pending orders (pending above and pending below), forming an OCO pair. The pending orders are only placed on the order book when the working order gets fully filled.
	The rules of the pending above and pending below follow the same rules as the Order list OCO.
	OTOCOs add 3 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
3
Data Source:
Matching Engine
Full docs: Binance API – orderList/otoco POST

BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitPendingAboveLimitMakerBelowStopLossLimitQuery

Order List Otoco (post) - Working limit pending above limit maker pending below stop loss limit query
New Order list - OTOCO (TRADE)
POST /api/v3/orderList/otoco
Place an OTOCO.
	An OTOCO (One-Triggers-One-Cancels-the-Other) is an order list comprised of 3 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The behavior of the working order is the same as the OTO.
	OTOCO has 2 pending orders (pending above and pending below), forming an OCO pair. The pending orders are only placed on the order book when the working order gets fully filled.
	The rules of the pending above and pending below follow the same rules as the Order list OCO.
	OTOCOs add 3 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
3
Data Source:
Matching Engine
Full docs: Binance API – orderList/otoco POST

BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitPendingAboveLimitMakerBelowStopLossQuery

Order List Otoco (post) - Working limit pending above limit maker pending below stop loss query
New Order list - OTOCO (TRADE)
POST /api/v3/orderList/otoco
Place an OTOCO.
	An OTOCO (One-Triggers-One-Cancels-the-Other) is an order list comprised of 3 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The behavior of the working order is the same as the OTO.
	OTOCO has 2 pending orders (pending above and pending below), forming an OCO pair. The pending orders are only placed on the order book when the working order gets fully filled.
	The rules of the pending above and pending below follow the same rules as the Order list OCO.
	OTOCOs add 3 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
3
Data Source:
Matching Engine
Full docs: Binance API – orderList/otoco POST

BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitPendingAboveStopLossBelowLimitMakerQuery

Order List Otoco (post) - Working limit pending above stop loss below limit maker query
New Order list - OTOCO (TRADE)
POST /api/v3/orderList/otoco
Place an OTOCO.
	An OTOCO (One-Triggers-One-Cancels-the-Other) is an order list comprised of 3 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The behavior of the working order is the same as the OTO.
	OTOCO has 2 pending orders (pending above and pending below), forming an OCO pair. The pending orders are only placed on the order book when the working order gets fully filled.
	The rules of the pending above and pending below follow the same rules as the Order list OCO.
	OTOCOs add 3 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
3
Data Source:
Matching Engine
Full docs: Binance API – orderList/otoco POST

BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitPendingAboveStopLossBelowTakeProfitLimitQuery

Order List Otoco (post) - Working limit pending above stop loss below take profit limit query
New Order list - OTOCO (TRADE)
POST /api/v3/orderList/otoco
Place an OTOCO.
	An OTOCO (One-Triggers-One-Cancels-the-Other) is an order list comprised of 3 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The behavior of the working order is the same as the OTO.
	OTOCO has 2 pending orders (pending above and pending below), forming an OCO pair. The pending orders are only placed on the order book when the working order gets fully filled.
	The rules of the pending above and pending below follow the same rules as the Order list OCO.
	OTOCOs add 3 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
3
Data Source:
Matching Engine
Full docs: Binance API – orderList/otoco POST

BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitPendingAboveStopLossBelowTakeProfitQuery

Order List Otoco (post) - Working limit pending above stop loss below take profit query
New Order list - OTOCO (TRADE)
POST /api/v3/orderList/otoco
Place an OTOCO.
	An OTOCO (One-Triggers-One-Cancels-the-Other) is an order list comprised of 3 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The behavior of the working order is the same as the OTO.
	OTOCO has 2 pending orders (pending above and pending below), forming an OCO pair. The pending orders are only placed on the order book when the working order gets fully filled.
	The rules of the pending above and pending below follow the same rules as the Order list OCO.
	OTOCOs add 3 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
3
Data Source:
Matching Engine
Full docs: Binance API – orderList/otoco POST

BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitPendingAboveStopLossLimitBelowLimitMakerQuery

Order List Otoco (post) - Working limit pending above stop loss limit below limit maker query
New Order list - OTOCO (TRADE)
POST /api/v3/orderList/otoco
Place an OTOCO.
	An OTOCO (One-Triggers-One-Cancels-the-Other) is an order list comprised of 3 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The behavior of the working order is the same as the OTO.
	OTOCO has 2 pending orders (pending above and pending below), forming an OCO pair. The pending orders are only placed on the order book when the working order gets fully filled.
	The rules of the pending above and pending below follow the same rules as the Order list OCO.
	OTOCOs add 3 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
3
Data Source:
Matching Engine
Full docs: Binance API – orderList/otoco POST

BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitPendingAboveStopLossLimitBelowTakeProfitLimitQuery

Order List Otoco (post) - Working limit pending above stop loss limit below take profit limit query
New Order list - OTOCO (TRADE)
POST /api/v3/orderList/otoco
Place an OTOCO.
	An OTOCO (One-Triggers-One-Cancels-the-Other) is an order list comprised of 3 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The behavior of the working order is the same as the OTO.
	OTOCO has 2 pending orders (pending above and pending below), forming an OCO pair. The pending orders are only placed on the order book when the working order gets fully filled.
	The rules of the pending above and pending below follow the same rules as the Order list OCO.
	OTOCOs add 3 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
3
Data Source:
Matching Engine
Full docs: Binance API – orderList/otoco POST

BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitPendingAboveStopLossLimitBelowTakeProfitQuery

Order List Otoco (post) - Working limit pending above stop loss limit below take profit query
New Order list - OTOCO (TRADE)
POST /api/v3/orderList/otoco
Place an OTOCO.
	An OTOCO (One-Triggers-One-Cancels-the-Other) is an order list comprised of 3 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The behavior of the working order is the same as the OTO.
	OTOCO has 2 pending orders (pending above and pending below), forming an OCO pair. The pending orders are only placed on the order book when the working order gets fully filled.
	The rules of the pending above and pending below follow the same rules as the Order list OCO.
	OTOCOs add 3 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
3
Data Source:
Matching Engine
Full docs: Binance API – orderList/otoco POST

BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitPendingAboveTakeProfitBelowStopLossLimitQuery

Order List Otoco (post) - Working limit pending above take profit below stop loss limit query
New Order list - OTOCO (TRADE)
POST /api/v3/orderList/otoco
Place an OTOCO.
	An OTOCO (One-Triggers-One-Cancels-the-Other) is an order list comprised of 3 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The behavior of the working order is the same as the OTO.
	OTOCO has 2 pending orders (pending above and pending below), forming an OCO pair. The pending orders are only placed on the order book when the working order gets fully filled.
	The rules of the pending above and pending below follow the same rules as the Order list OCO.
	OTOCOs add 3 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
3
Data Source:
Matching Engine
Full docs: Binance API – orderList/otoco POST

BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitPendingAboveTakeProfitBelowStopLossQuery

Order List Otoco (post) - Working limit pending above take profit below stop loss query
New Order list - OTOCO (TRADE)
POST /api/v3/orderList/otoco
Place an OTOCO.
	An OTOCO (One-Triggers-One-Cancels-the-Other) is an order list comprised of 3 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The behavior of the working order is the same as the OTO.
	OTOCO has 2 pending orders (pending above and pending below), forming an OCO pair. The pending orders are only placed on the order book when the working order gets fully filled.
	The rules of the pending above and pending below follow the same rules as the Order list OCO.
	OTOCOs add 3 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
3
Data Source:
Matching Engine
Full docs: Binance API – orderList/otoco POST

BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitPendingAboveTakeProfitLimitBelowStopLossLimitQuery

Order List Otoco (post) - Working limit pending above take profit limit below stop loss limit query
New Order list - OTOCO (TRADE)
POST /api/v3/orderList/otoco
Place an OTOCO.
	An OTOCO (One-Triggers-One-Cancels-the-Other) is an order list comprised of 3 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The behavior of the working order is the same as the OTO.
	OTOCO has 2 pending orders (pending above and pending below), forming an OCO pair. The pending orders are only placed on the order book when the working order gets fully filled.
	The rules of the pending above and pending below follow the same rules as the Order list OCO.
	OTOCOs add 3 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
3
Data Source:
Matching Engine
Full docs: Binance API – orderList/otoco POST

BinanceSpotRest.Endpoints.Trading.OrderListOtocoPost.WorkingLimitPendingAboveTakeProfitLimitBelowStopLossQuery

Order List Otoco (post) - Working limit pending above take profit limit below stop loss query
New Order list - OTOCO (TRADE)
POST /api/v3/orderList/otoco
Place an OTOCO.
	An OTOCO (One-Triggers-One-Cancels-the-Other) is an order list comprised of 3 orders.
	The first order is called the working order and must be LIMIT or LIMIT_MAKER. Initially, only the working order goes on the order book.
	The behavior of the working order is the same as the OTO.
	OTOCO has 2 pending orders (pending above and pending below), forming an OCO pair. The pending orders are only placed on the order book when the working order gets fully filled.
	The rules of the pending above and pending below follow the same rules as the Order list OCO.
	OTOCOs add 3 orders to the EXCHANGE_MAX_NUM_ORDERS filter and MAX_NUM_ORDERS filter.

Weight: 1
Unfilled Order Count:
3
Data Source:
Matching Engine
Full docs: Binance API – orderList/otoco POST

BinanceSpotRest.Endpoints.Trading.OrderPost.LimitMakerQuery

Order (post) - Limit maker query
New order (TRADE)
POST /api/v3/order
Send in a new order.
Weight:
1
Data Source:
Matching Engine
Full docs: Binance API – order

BinanceSpotRest.Endpoints.Trading.OrderPost.LimitQuery

Order (post) - Limit query
New order (TRADE)
POST /api/v3/order
Send in a new order.
Weight:
1
Data Source:
Matching Engine
Full docs: Binance API – order

BinanceSpotRest.Endpoints.Trading.OrderPost.MarketQuery

Order (post) - Market query
New order (TRADE)
POST /api/v3/order
Send in a new order.
Weight:
1
Data Source:
Matching Engine
Full docs: Binance API – order

BinanceSpotRest.Endpoints.Trading.OrderPost.StopLossLimitQuery

Order (post) - Stop loss limit query
New order (TRADE)
POST /api/v3/order
Send in a new order.
Weight:
1
Data Source:
Matching Engine
Full docs: Binance API – order

BinanceSpotRest.Endpoints.Trading.OrderPost.StopLossQuery

Order (post) - Stop loss query
New order (TRADE)
POST /api/v3/order
Send in a new order.
Weight:
1
Data Source:
Matching Engine
Full docs: Binance API – order

BinanceSpotRest.Endpoints.Trading.OrderPost.TakeProfitLimitQuery

Order (post) - Take profit limit query
New order (TRADE)
POST /api/v3/order
Send in a new order.
Weight:
1
Data Source:
Matching Engine
Full docs: Binance API – order

BinanceSpotRest.Endpoints.Trading.OrderPost.TakeProfitQuery

Order (post) - Take profit query
New order (TRADE)
POST /api/v3/order
Send in a new order.
Weight:
1
Data Source:
Matching Engine
Full docs: Binance API – order

BinanceSpotRest.Endpoints.Trading.OrderTestPost.LimitMakerQuery

Order Test (post) - Limit maker query
Test new order (TRADE)
POST /api/v3/order/test
Test new order creation and signature/recvWindow long.
Creates and validates a new order but does not send it into the matching engine.
Weight:
	Condition	Request Weight
	Without computeCommissionRates	1
	With computeCommissionRates	20

Parameters:
In addition to all parameters accepted by POST /api/v3/order,
the following optional parameters are also accepted:
	Name	Type	Mandatory	Description
	computeCommissionRates	BOOLEAN	NO	Default: false

Data Source:
Memory
Response:
Without computeCommissionRates
{}
With computeCommissionRates
{
 "standardCommissionForOrder": { //Standard commission rates on trades from the order.
 "maker": "0.00000112",
 "taker": "0.00000114"
 },
 "taxCommissionForOrder": { //Tax commission rates for trades from the order.
 "maker": "0.00000112",
 "taker": "0.00000114"
 },
 "discount": { //Discount on standard commissions when paying in BNB.
 "enabledForAccount": true,
 "enabledForSymbol": true,
 "discountAsset": "BNB",
 "discount": "0.25000000" //Standard commission is reduced by this rate when paying commission in BNB.
 }
}

BinanceSpotRest.Endpoints.Trading.OrderTestPost.LimitQuery

Order Test (post) - Limit query
Test new order (TRADE)
POST /api/v3/order/test
Test new order creation and signature/recvWindow long.
Creates and validates a new order but does not send it into the matching engine.
Weight:
	Condition	Request Weight
	Without computeCommissionRates	1
	With computeCommissionRates	20

Parameters:
In addition to all parameters accepted by POST /api/v3/order,
the following optional parameters are also accepted:
	Name	Type	Mandatory	Description
	computeCommissionRates	BOOLEAN	NO	Default: false

Data Source:
Memory
Response:
Without computeCommissionRates
{}
With computeCommissionRates
{
 "standardCommissionForOrder": { //Standard commission rates on trades from the order.
 "maker": "0.00000112",
 "taker": "0.00000114"
 },
 "taxCommissionForOrder": { //Tax commission rates for trades from the order.
 "maker": "0.00000112",
 "taker": "0.00000114"
 },
 "discount": { //Discount on standard commissions when paying in BNB.
 "enabledForAccount": true,
 "enabledForSymbol": true,
 "discountAsset": "BNB",
 "discount": "0.25000000" //Standard commission is reduced by this rate when paying commission in BNB.
 }
}

BinanceSpotRest.Endpoints.Trading.OrderTestPost.MarketQuery

Order Test (post) - Market query
Test new order (TRADE)
POST /api/v3/order/test
Test new order creation and signature/recvWindow long.
Creates and validates a new order but does not send it into the matching engine.
Weight:
	Condition	Request Weight
	Without computeCommissionRates	1
	With computeCommissionRates	20

Parameters:
In addition to all parameters accepted by POST /api/v3/order,
the following optional parameters are also accepted:
	Name	Type	Mandatory	Description
	computeCommissionRates	BOOLEAN	NO	Default: false

Data Source:
Memory
Response:
Without computeCommissionRates
{}
With computeCommissionRates
{
 "standardCommissionForOrder": { //Standard commission rates on trades from the order.
 "maker": "0.00000112",
 "taker": "0.00000114"
 },
 "taxCommissionForOrder": { //Tax commission rates for trades from the order.
 "maker": "0.00000112",
 "taker": "0.00000114"
 },
 "discount": { //Discount on standard commissions when paying in BNB.
 "enabledForAccount": true,
 "enabledForSymbol": true,
 "discountAsset": "BNB",
 "discount": "0.25000000" //Standard commission is reduced by this rate when paying commission in BNB.
 }
}

BinanceSpotRest.Endpoints.Trading.OrderTestPost.StopLossLimitQuery

Order Test (post) - Stop loss limit query
Test new order (TRADE)
POST /api/v3/order/test
Test new order creation and signature/recvWindow long.
Creates and validates a new order but does not send it into the matching engine.
Weight:
	Condition	Request Weight
	Without computeCommissionRates	1
	With computeCommissionRates	20

Parameters:
In addition to all parameters accepted by POST /api/v3/order,
the following optional parameters are also accepted:
	Name	Type	Mandatory	Description
	computeCommissionRates	BOOLEAN	NO	Default: false

Data Source:
Memory
Response:
Without computeCommissionRates
{}
With computeCommissionRates
{
 "standardCommissionForOrder": { //Standard commission rates on trades from the order.
 "maker": "0.00000112",
 "taker": "0.00000114"
 },
 "taxCommissionForOrder": { //Tax commission rates for trades from the order.
 "maker": "0.00000112",
 "taker": "0.00000114"
 },
 "discount": { //Discount on standard commissions when paying in BNB.
 "enabledForAccount": true,
 "enabledForSymbol": true,
 "discountAsset": "BNB",
 "discount": "0.25000000" //Standard commission is reduced by this rate when paying commission in BNB.
 }
}

BinanceSpotRest.Endpoints.Trading.OrderTestPost.StopLossQuery

Order Test (post) - Stop loss query
Test new order (TRADE)
POST /api/v3/order/test
Test new order creation and signature/recvWindow long.
Creates and validates a new order but does not send it into the matching engine.
Weight:
	Condition	Request Weight
	Without computeCommissionRates	1
	With computeCommissionRates	20

Parameters:
In addition to all parameters accepted by POST /api/v3/order,
the following optional parameters are also accepted:
	Name	Type	Mandatory	Description
	computeCommissionRates	BOOLEAN	NO	Default: false

Data Source:
Memory
Response:
Without computeCommissionRates
{}
With computeCommissionRates
{
 "standardCommissionForOrder": { //Standard commission rates on trades from the order.
 "maker": "0.00000112",
 "taker": "0.00000114"
 },
 "taxCommissionForOrder": { //Tax commission rates for trades from the order.
 "maker": "0.00000112",
 "taker": "0.00000114"
 },
 "discount": { //Discount on standard commissions when paying in BNB.
 "enabledForAccount": true,
 "enabledForSymbol": true,
 "discountAsset": "BNB",
 "discount": "0.25000000" //Standard commission is reduced by this rate when paying commission in BNB.
 }
}

BinanceSpotRest.Endpoints.Trading.OrderTestPost.TakeProfitLimitQuery

Order Test (post) - Take profit limit query
Test new order (TRADE)
POST /api/v3/order/test
Test new order creation and signature/recvWindow long.
Creates and validates a new order but does not send it into the matching engine.
Weight:
	Condition	Request Weight
	Without computeCommissionRates	1
	With computeCommissionRates	20

Parameters:
In addition to all parameters accepted by POST /api/v3/order,
the following optional parameters are also accepted:
	Name	Type	Mandatory	Description
	computeCommissionRates	BOOLEAN	NO	Default: false

Data Source:
Memory
Response:
Without computeCommissionRates
{}
With computeCommissionRates
{
 "standardCommissionForOrder": { //Standard commission rates on trades from the order.
 "maker": "0.00000112",
 "taker": "0.00000114"
 },
 "taxCommissionForOrder": { //Tax commission rates for trades from the order.
 "maker": "0.00000112",
 "taker": "0.00000114"
 },
 "discount": { //Discount on standard commissions when paying in BNB.
 "enabledForAccount": true,
 "enabledForSymbol": true,
 "discountAsset": "BNB",
 "discount": "0.25000000" //Standard commission is reduced by this rate when paying commission in BNB.
 }
}

BinanceSpotRest.Endpoints.Trading.OrderTestPost.TakeProfitQuery

Order Test (post) - Take profit query
Test new order (TRADE)
POST /api/v3/order/test
Test new order creation and signature/recvWindow long.
Creates and validates a new order but does not send it into the matching engine.
Weight:
	Condition	Request Weight
	Without computeCommissionRates	1
	With computeCommissionRates	20

Parameters:
In addition to all parameters accepted by POST /api/v3/order,
the following optional parameters are also accepted:
	Name	Type	Mandatory	Description
	computeCommissionRates	BOOLEAN	NO	Default: false

Data Source:
Memory
Response:
Without computeCommissionRates
{}
With computeCommissionRates
{
 "standardCommissionForOrder": { //Standard commission rates on trades from the order.
 "maker": "0.00000112",
 "taker": "0.00000114"
 },
 "taxCommissionForOrder": { //Tax commission rates for trades from the order.
 "maker": "0.00000112",
 "taker": "0.00000114"
 },
 "discount": { //Discount on standard commissions when paying in BNB.
 "enabledForAccount": true,
 "enabledForSymbol": true,
 "discountAsset": "BNB",
 "discount": "0.25000000" //Standard commission is reduced by this rate when paying commission in BNB.
 }
}

BinanceSpotRest.Endpoints.Trading.SorOrderPost.LimitQuery

Sor Order (post) - Limit query
New order using SOR (TRADE)
(
 This endpoint is not tested online because of:
 The Smart Order Routing (SOR) feature is not available on the Binance Spot Testnet.
 While Binance's Spot Testnet does offer a way to test trading functionalities using their API,
 it focuses on standard order types like market, limit, stop-limit, and OCO orders.
 SOR, an experimental feature, is specifically available on the mainnet for certain trading pairs
 and is not enabled on the testnet environment.
)
POST /api/v3/sor/order
Places an order using smart order routing (SOR).
This adds 1 order to the EXCHANGE_MAX_ORDERS filter and the MAX_NUM_ORDERS filter.
Read SOR FAQ to learn more.
Weight:
1
Unfilled Order Count:
1
Note: POST /api/v3/sor/order only supports LIMIT and MARKET orders. quoteOrderQty is not supported.
Data Source:
Matching Engine
Full docs: Binance API – sor/order POST

BinanceSpotRest.Endpoints.Trading.SorOrderPost.MarketQuery

Sor Order (post) - Market query
New order using SOR (TRADE)
(
 This endpoint is not tested online because of:
 The Smart Order Routing (SOR) feature is not available on the Binance Spot Testnet.
 While Binance's Spot Testnet does offer a way to test trading functionalities using their API,
 it focuses on standard order types like market, limit, stop-limit, and OCO orders.
 SOR, an experimental feature, is specifically available on the mainnet for certain trading pairs
 and is not enabled on the testnet environment.
)
POST /api/v3/sor/order
Places an order using smart order routing (SOR).
This adds 1 order to the EXCHANGE_MAX_ORDERS filter and the MAX_NUM_ORDERS filter.
Read SOR FAQ to learn more.
Weight:
1
Unfilled Order Count:
1
Note: POST /api/v3/sor/order only supports LIMIT and MARKET orders. quoteOrderQty is not supported.
Data Source:
Matching Engine
Full docs: Binance API – sor/order POST

BinanceSpotRest.Endpoints.Trading.SorOrderTestPost.LimitQuery

Sor Order Test (post) - Limit query
Test new order using SOR (TRADE)
POST /api/v3/sor/order/test
Test new order creation and signature/recvWindow using smart order routing (SOR).
Creates and validates a new order but does not send it into the matching engine.
Weight:
Condition	Request Weight
Without computeCommissionRates	1
With computeCommissionRates	20
Parameters:
In addition to all parameters accepted by POST /api/v3/sor/order,
the following optional parameters are also accepted:
	Name	Type	Mandatory	Description
	computeCommissionRates	BOOLEAN	NO	Default: false

Data Source:
Memory
Response:
Without computeCommissionRates
{}
With computeCommissionRates
{
 "standardCommissionForOrder": { //Standard commission rates on trades from the order.
 "maker": "0.00000112",
 "taker": "0.00000114"
 },
 "taxCommissionForOrder": { //Tax commission rates for trades from the order
 "maker": "0.00000112",
 "taker": "0.00000114"
 },
 "discount": { //Discount on standard commissions when paying in BNB.
 "enabledForAccount": true,
 "enabledForSymbol": true,
 "discountAsset": "BNB",
 "discount": "0.25000000" //Standard commission is reduced by this rate when paying commission in BNB.
 }
}

BinanceSpotRest.Endpoints.Trading.SorOrderTestPost.MarketQuery

Sor Order Test (post) - Market query
Test new order using SOR (TRADE)
POST /api/v3/sor/order/test
Test new order creation and signature/recvWindow using smart order routing (SOR).
Creates and validates a new order but does not send it into the matching engine.
Weight:
Condition	Request Weight
Without computeCommissionRates	1
With computeCommissionRates	20
Parameters:
In addition to all parameters accepted by POST /api/v3/sor/order,
the following optional parameters are also accepted:
	Name	Type	Mandatory	Description
	computeCommissionRates	BOOLEAN	NO	Default: false

Data Source:
Memory
Response:
Without computeCommissionRates
{}
With computeCommissionRates
{
 "standardCommissionForOrder": { //Standard commission rates on trades from the order.
 "maker": "0.00000112",
 "taker": "0.00000114"
 },
 "taxCommissionForOrder": { //Tax commission rates for trades from the order
 "maker": "0.00000112",
 "taker": "0.00000114"
 },
 "discount": { //Discount on standard commissions when paying in BNB.
 "enabledForAccount": true,
 "enabledForSymbol": true,
 "discountAsset": "BNB",
 "discount": "0.25000000" //Standard commission is reduced by this rate when paying commission in BNB.
 }
}

BinanceSpotRest.Enums.CancelReplaceMode

Defines cancel-replace modes for Binance Spot orders.
This enum corresponds to the cancelReplaceMode parameter in the
Binance API – Cancel an Existing Order and Send a New Order (TRADE).
Supported values:
	:STOP_ON_FAILURE – If the cancel request fails, the new order placement will not be attempted.
	:ALLOW_FAILURE – The new order placement will be attempted even if the cancel request fails.

 Summary

 Functions

 all()

 keys()

 values()

 Functions

 all()

 keys()

 values()

BinanceSpotRest.Enums.CancelRestrictions

Defines cancel restrictions for Binance Spot orders.
This enum is used in the
Cancel order (TRADE)
and
Cancel an Existing Order and Send a New Order (TRADE)
endpoints.
Supported values:
	:ONLY_NEW – Cancel will succeed only if the order status is NEW.
	:ONLY_PARTIALLY_FILLED – Cancel will succeed only if the order status is PARTIALLY_FILLED.
For more details, see Regarding cancelRestrictions.

 Summary

 Functions

 all()

 keys()

 values()

 Functions

 all()

 keys()

 values()

BinanceSpotRest.Enums.Interval

Defines kline/candlestick intervals for Binance Spot API endpoints.
This enum is used in the
Kline/Candlestick data
and
UIKlines endpoints.
Supported values:
	Seconds: :"1s"
	Minutes: :"1m", :"3m", :"5m", :"15m", :"30m"
	Hours: :"1h", :"2h", :"4h", :"6h", :"8h", :"12h"
	Days: :"1d", :"3d"
	Weeks: :"1w"
	Months: :"1M"

 Summary

 Functions

 all()

 keys()

 values()

 Functions

 all()

 keys()

 values()

BinanceSpotRest.Enums.Method

Defines HTTP methods supported by the Binance Spot REST API.
	:get — Retrieve data
	:post — Create a resource or send data
	:put — Update an existing resource
	:delete — Remove a resource

 Summary

 Functions

 all()

 keys()

 values()

 Functions

 all()

 keys()

 values()

BinanceSpotRest.Enums.NewOrderRespType

Defines the response type for new order requests.
This enum corresponds to the newOrderRespType parameter in the
Binance API – New Order (TRADE).
Supported values:
	:ACK – Order accepted and immediately acknowledged. Only orderId is returned.
	:RESULT – Order accepted and result is returned, including order details such as symbol, order type, side, etc.
	:FULL – Order accepted and full order information is returned, including fills.

 Summary

 Functions

 all()

 keys()

 values()

 Functions

 all()

 keys()

 values()

BinanceSpotRest.Enums.OrderRateLimitExceededMode

Defines the behavior when an order rate limit is exceeded.
This enum corresponds to the orderRateLimitExceededMode field
in the POST /api/v3/order/cancelReplace.
Supported values:
	:DO_NOTHING – No special action is taken when the rate limit is exceeded.
	:CANCEL_ONLY – Account is restricted to cancel-only mode; new orders are not allowed,
but existing open orders can still be canceled.

 Summary

 Functions

 all()

 keys()

 values()

 Functions

 all()

 keys()

 values()

BinanceSpotRest.Enums.OrderType

Defines supported order types for the Binance Spot REST API.
This enum corresponds to the orderType parameter in the
Binance API – New Order (TRADE).
Supported values:
	:LIMIT – Buy or sell at a specified price or better.
	:MARKET – Buy or sell immediately at the best available market price.
	:STOP_LOSS – Triggers a market order once the stop price is reached.
	:STOP_LOSS_LIMIT – Triggers a limit order once the stop price is reached.
	:TAKE_PROFIT – Triggers a market order once the take-profit price is reached.
	:TAKE_PROFIT_LIMIT – Triggers a limit order once the take-profit price is reached.
	:LIMIT_MAKER – A limit order that must be posted to the order book (maker only).
If it would match immediately as a taker, it is rejected.

 Summary

 Functions

 all()

 keys()

 values()

 Functions

 all()

 keys()

 values()

BinanceSpotRest.Enums.Permission

Defines account and symbol permissions for the Binance Spot REST API.
This enum corresponds to the permissions field in the
Binance API – Exchange Information.
Permissions indicate which types of trading are allowed for a given symbol.
Supported values:
	:SPOT – Spot trading permission.
Note: This is the *only permission available on Testnet.

	:MARGIN – Margin trading permission.

	:LEVERAGED – Leveraged token trading permission.

	:TRD_GRP_002 .. :TRD_GRP_025 – Internal Binance trading groups, used
to define more granular or special trading permissions.
These may vary by account type and are not typically used in standard
Spot/Margin API operations.

 Summary

 Functions

 all()

 keys()

 values()

 Functions

 all()

 keys()

 values()

BinanceSpotRest.Enums.SecurityType

Defines the security type required for Binance Spot REST API endpoints.
This enum corresponds to the securityType field in the
Binance API – General API Information.
Security type specifies what kind of authentication is needed
when calling an endpoint.
Supported values:
	:NONE – No authentication required.
Example: public market data endpoints.

	:TRADE – Endpoint requires an API key and a signed payload.
Used for creating and managing orders.

	:USER_DATA – Endpoint requires an API key and a signed payload.
Used for account information, balances, and order history.

	:USER_STREAM – Endpoint requires an API key.
Used for starting and managing user data streams (WebSocket listen keys).

 Summary

 Functions

 all()

 keys()

 values()

 Functions

 all()

 keys()

 values()

BinanceSpotRest.Enums.SelfTradePreventionMode

Defines self-trade prevention modes for Binance Spot orders.
This enum corresponds to the selfTradePreventionMode parameter in the
Binance API – New Order (TRADE).
Supported values:
	:NONE – No self-trade prevention is applied.
	:EXPIRE_MAKER – If a new order would match an existing order from the same account, the maker order is canceled.
	:EXPIRE_TAKER – If a new order would match an existing order from the same account, the taker order is canceled.
	:EXPIRE_BOTH – If a new order would match an existing order from the same account, both orders are canceled.

More info: Self Trade Prevention (STP) FAQ

 Summary

 Functions

 all()

 keys()

 values()

 Functions

 all()

 keys()

 values()

BinanceSpotRest.Enums.Side

Defines order sides for Binance Spot orders.
This enum corresponds to the side parameter in the
Binance API – New Order (TRADE).
Supported values:
	:BUY – Place a buy order.
	:SELL – Place a sell order.

 Summary

 Functions

 all()

 keys()

 values()

 Functions

 all()

 keys()

 values()

BinanceSpotRest.Enums.SymbolStatus

Defines the trading status of a symbol in the Binance Spot market.
This enum corresponds to the status field in the
Binance API – Exchange Information.
Supported values:
	:TRADING – The symbol is active and trading is allowed.
	:HALT – Trading for the symbol is temporarily halted.
	:BREAK – Trading for the symbol is in a break period and not allowed.

 Summary

 Functions

 all()

 keys()

 values()

 Functions

 all()

 keys()

 values()

BinanceSpotRest.Enums.TimeInForce

Defines the time-in-force options for Binance Spot orders.
This enum corresponds to the timeInForce parameter in the
Binance API – New Order (TRADE).
Supported values:
	:GTC – Good Till Canceled. The order remains active on the book until it is canceled.
	:IOC – Immediate Or Cancel. The order will attempt to fill as much as possible immediately, and any unfilled portion is canceled.
	:FOK – Fill Or Kill. The order must be filled in its entirety immediately, or it is canceled.

 Summary

 Functions

 all()

 keys()

 values()

 Functions

 all()

 keys()

 values()

BinanceSpotRest.Enums.Type

Defines symbol quote types for the Binance Spot market.
For example this enum corresponds to the type parameter in the
Binance API – Rolling window price change statistics.
And other endpoints with type parameter.
Supported values:
	:FULL – Full symbol information including all trading details.
	:MINI – Minimal symbol information with essential details only.

 Summary

 Functions

 all()

 keys()

 values()

 Functions

 all()

 keys()

 values()

BinanceSpotRest.Enums.WindowSize

Defines allowed window sizes for Binance Spot API endpoints that require a time interval.
This enum is commonly used for endpoints such as
Rolling window price change statistics.
And other endpoints with windowSize parameter.
Supported values:
	Minute intervals: :1m to :59m
	Hour intervals: :1h to :23h
	Day intervals: :1d to :7d

 Summary

 Functions

 all()

 keys()

 values()

 Functions

 all()

 keys()

 values()

BinanceSpotRest.Query protocol

Protocol for endpoint query structs.
Provides two main functions to handle query validation and preparation
before sending requests via BinanceSpotRest.Client.
Functions
	validate(query) - Validates the query struct.
Returns {:ok, query} if valid or {:error, reason} if invalid.

	prepare(query) - Prepares the query for sending.
Returns {:ok, %BinanceSpotRest.Query.RequestSpec{}} containing
metadata and the original query struct.

Usage Example
iex> import Loe
iex> query = %BinanceSpotRest.Endpoints.General.Time.Query{}
iex> query ~>> BinanceSpotRest.Query.validate()
{:ok, %BinanceSpotRest.Endpoints.General.Time.Query{}}
iex> query ~>> BinanceSpotRest.Query.validate() ~>> BinanceSpotRest.Query.prepare()
{:ok,
 %BinanceSpotRest.Query.RequestSpec{
 metadata: %BinanceSpotRest.Query.EndpointMetadata{
 endpoint: "/api/v3/time",
 method: :get,
 security_type: :NONE
 },
 query: %BinanceSpotRest.Endpoints.General.Time.Query{}
 }}
Note: All endpoint query structs should implement this protocol.

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 prepare(query)

 validate(query)

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 prepare(query)

 validate(query)

BinanceSpotRest.Query.EndpointMetadata

Endpoint metadata (internal/advanced use).
This struct holds information about a specific Binance endpoint used by RequestSpec.
Fields
	:endpoint - API endpoint path (e.g., "/api/v3/order")
	:method - HTTP method (:get, :post, :put, etc.)
	:security_type - Security type required for the endpoint (:NONE, :TRADE, :USER_DATA, etc.)

Note: Used internally by BinanceSpotRest.Query.RequestSpec and BinanceSpotRest.Client.

BinanceSpotRest.Query.RequestSpec

Low-level request specification (internal/advanced use).
This struct represents a full request specification that is returned by
BinanceSpotRest.Query.prepare/1. It includes metadata about the endpoint
and the actual query struct.
Workflow
	Start with a query struct for an endpoint:
 iex> query = %BinanceSpotRest.Endpoints.General.Time.Query{}

	Validate the query:
 iex> query ~>> BinanceSpotRest.Query.validate()
 {:ok, %BinanceSpotRest.Endpoints.General.Time.Query{}}

	Prepare the request spec:
 iex> query ~>> BinanceSpotRest.Query.validate() ~>> BinanceSpotRest.Query.prepare()
 {:ok,
 %BinanceSpotRest.Query.RequestSpec{
metadata: %BinanceSpotRest.Query.EndpointMetadata{
 endpoint: "/api/v3/time",
 method: :get,
 security_type: :NONE
},
query: %BinanceSpotRest.Endpoints.General.Time.Query{}
 }}

Fields
	:metadata - BinanceSpotRest.Query.EndpointMetadata struct describing the endpoint, HTTP method,
and security type
	:query - The query struct containing parameters for the request

Note: Typically created by Query.prepare/1 and used internally by BinanceSpotRest.Client.create_request/2.

BinanceSpotRest.Validators.IcebergQty

Internal
Validator for the icebergQty field.
Rules:
	icebergQty is optional.
	If present, it must be a Decimal.
	It is only allowed when timeInForce is :GTC or nil.
	It must be less than the quantity value.

Examples
iex> BinanceSpotRest.Validators.IcebergQty.validate(%{icebergQty: Decimal.new("0.5"), timeInForce: :GTC, quantity: Decimal.new("1.0")})
:ok

iex> {:error, %Valpa.Error{field: :timeInForce}} = BinanceSpotRest.Validators.IcebergQty.validate(%{icebergQty: Decimal.new("0.5"), timeInForce: :IOC, quantity: Decimal.new("1.0")})

iex> {:error, %Valpa.Error{field: :icebergQty}} = BinanceSpotRest.Validators.IcebergQty.validate(%{icebergQty: Decimal.new("1.5"), timeInForce: :GTC, quantity: Decimal.new("1.0")})

iex> BinanceSpotRest.Validators.IcebergQty.validate(%{icebergQty: Decimal.new("0.5"), quantity: Decimal.new("1.0")})
:ok

iex> {:error, %Valpa.Error{field: :icebergQty}} = BinanceSpotRest.Validators.IcebergQty.validate(%{icebergQty: "0.5", timeInForce: :GTC, quantity: Decimal.new("1.0")})

iex> {:error, %Valpa.Error{field: :quantity}} = BinanceSpotRest.Validators.IcebergQty.validate(%{icebergQty: Decimal.new("0.5"), timeInForce: :GTC})

iex> BinanceSpotRest.Validators.IcebergQty.validate(%{timeInForce: :GTC, quantity: Decimal.new("1.0")})
:ok

iex> BinanceSpotRest.Validators.IcebergQty.validate(%{})
:ok

 Summary

 Functions

 validate(map, iceberg_qty_key, time_in_force_key, quantity_key)

 Functions

 validate(map, iceberg_qty_key, time_in_force_key, quantity_key)

BinanceSpotRest.Validators.StartTimeEndTimeRange24h

Internal
Validate that endTime is not before startTime and that the interval doesn't exceed 24 hours.
The time interval (after converting seconds to milliseconds when needed) cannot exceed 24 hours (86,400,000 milliseconds).
Examples
iex> BinanceSpotRest.Validators.StartTimeEndTimeRange24h.validate(%{startTime: 1_700_000_000_000, endTime: 1_700_000_500_000})
:ok

iex> BinanceSpotRest.Validators.StartTimeEndTimeRange24h.validate(%{startTime: 1_700_000_000, endTime: 1_700_000_500})
:ok

iex> {:error, _} = BinanceSpotRest.Validators.StartTimeEndTimeRange24h.validate(%{startTime: 1_700_000_500_000, endTime: 1_700_000_000_000})

iex> {:error, _} = BinanceSpotRest.Validators.StartTimeEndTimeRange24h.validate(%{startTime: 1_700_000_000_000, endTime: 1_700_090_000_000})

iex> BinanceSpotRest.Validators.StartTimeEndTimeRange24h.validate(%{startTime: 1_700_000_000_000, endTime: nil})
:ok

iex> BinanceSpotRest.Validators.StartTimeEndTimeRange24h.validate(%{startTime: nil, endTime: 1_700_000_500_000})
:ok

iex> BinanceSpotRest.Validators.StartTimeEndTimeRange24h.validate(%{startTime: nil, endTime: nil})
:ok

BinanceSpotRest.Validators.TimeZone

Internal
Validates timeZone values.
Supported formats:
	Hours only (e.g. "0", "8", "4", "-1")
	Hours and minutes (e.g. "-1:00", "05:45", "+10:30")

The accepted range is strictly from -12:00 to +14:00 (inclusive).

 Summary

 Functions

 validate(value)

 Returns :ok if tz is a valid time zone, {:error, reason} otherwise.

 Functions

 validate(value)

Returns :ok if tz is a valid time zone, {:error, reason} otherwise.
Examples
iex> BinanceSpotRest.Validators.TimeZone.validate("05:45")
:ok

iex> BinanceSpotRest.Validators.TimeZone.validate("-1")
:ok

iex> {:error, _} = BinanceSpotRest.Validators.TimeZone.validate("15")

iex> {:error, _} = BinanceSpotRest.Validators.TimeZone.validate("invalid")

BinanceSpotRest.Validators.WindowSize

Internal
Validates windowSize values.
Supported values:
	Minutes: "1m" to "59m"
	Hours: "1h" to "23h"
	Days: "1d" to "7d"

 Summary

 Functions

 validate(value)

 Returns :ok if ws is a valid window size, {:error, msg} otherwise.

 Functions

 validate(value)

Returns :ok if ws is a valid window size, {:error, msg} otherwise.
Examples
iex> BinanceSpotRest.Validators.WindowSize.validate("15m")
:ok

iex> {:error, _} = BinanceSpotRest.Validators.WindowSize.validate("24h")

iex> {:error, _} = BinanceSpotRest.Validators.WindowSize.validate(:"3d")

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

